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AASTRAC

Many writers have been 'oncer-ed with the problem of justifyIng

the use of stndard tests based on nox7ral theory assumptions when in

fact the underlying distribution to suspected of being non-rc~rmsl.

fTin research haa been concerned mainly with testa bazed only on

wltvaria t situations. They have found that the standard t and

P tests 4re remarkably inzensalive to deviations from norsality.

Nere, the muJltivariate generalization of the t test is Inves.i-

gated. The first four permutation cumulants are dteralmad for a

statistic whibh is a simple function of the cmonly used Io o,.llg's

Tn. in te uniari4t situation TS siqly becams the square of

t, and tets base on Tmare Identical with tests based on t.

Coqut. details of the Investlisticm are carried through for only

two dinsions loft slzI±Lr methods should apply to more dimeions.

%% deriwd pezvoatics emmuls ts. r applled to de obtain d ram

a saa3Ing exeimint. Ma swis are from bIvarlate z rl ad

V rnctagula~r pqrulatmas. Tbe smples drawn from Use morma. popula-

tIon served as a verification of the zbeoretical coutatlns and

s6U* prowidsd a acqarlon for the emirical results based an the

samles from the rectangular populatio. The actual empirical cal-

culat ions cmsieted in obtainlog all tbe perwitations of the statistic

used (a foction of T2 ) for each sample and obtaining frequency dle-

oif£s otiw h-i&.r ar per tations which give values for the

statistic vb ch are greater tha tkiose obtained from normal theory

assumptions for a certain nlif.fance leyel It is observed that



therm is mild diagmement betwean the nominal percentage point of

the test based on the aasumtion that the underlying distrIbution is

normi and the actual percentage point obtained by consideritn m11

permutations of each saple from the rectangular population.

A discussion of various wauys of adjusting the test criterion Is

Included wben one suspecti that the data does not come from & norml

distribution. These methodis am used on the saMles from the rect-

angular distribution. Oat, of these methods provides excellent agree-

ment at the variou sigalficance levels investigated.

Sul.tions toward directions for future investigatioms are given.

I!
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Chapter 1

POWTRXOK AND cOh-DDMI3DMAL CASE

The problem of juatifyins; or modifying anslysa of variance pro-

oedurea vhen the form, 0 the papuiatiom governing the observantions Is

not known to be normal has been inveetigated by P1ta t12J, Welch [141

and others 11, 3, 7, 8, 9). The earlier papers of Pitman [10, 111

&*A* it clear 'Obat be originally et out to find an approximtely nc-

parametric test based on quadratic expressions. iMen (12] gme

Gasper into the rsndiwi zatiaa theory for the simple tuc-my layoot

the" se0 Welch.

Th problema considered here Is the exensio of iMan's anallysts-

of-variance randomization test to the came of more' thmai ov response.

Such an exen~~iem night, izr the came of tvo treatents, he expected to

iea4 to Justification or modficatlcn of the use c4' Notlling' e2

f IJ. AtJ.dtails bave been carried thu juo for om27 the case of two

treatments and tva reaponma.

2. Piim's Treatmenit of the tiniveript .

Since the wldtivwiatst problem vill be treated alng th& lines of

Pitme's treatment of the atveriate ce"s, it soee logical to begin by

outliiai his proceihire. Re *esiaders k blocks (called wbatotlsa try

Pilwan). each a*1 alt'F --- of a ,.I-s~O ndiy1ebmlt

is not necessarily considered as bavIng come frm a larger population,
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T* n treatments are assiged to the individuals of & block at random.

e ew .... .-.. *m" . ul the rorm of randoilzed block#

and the Interest is in testing vhether differen~ces in treatments hays

prodaed any real differences in the riponse measured.

For k blocks, each with n treatments, the responses xij can

be displayed as follows

'C23. x 22 ... xz
'. l  x.2  ... Xk

ubere .r' '2r' ... , kr are the responses or the k individuals

subjected to treatmnt r.

Let

n

i. - J.l iJ .xEx

b2 k n

km

The tota.l m of smrra S ii 2Cinef to be -l J-. ijJ TIs .m

k k
ofsMS ca b Offt mx 2- L n- 1 =x

k n
+ -x -x + xI )a 1.2

where the r~~ olhntities on the right of *qa.Ptio 1.2 ane respectively

the sum of squaz*& (N) assignable to the oyerall now, bloc"s()
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treatments (R) and residual (C).

The usual ana!yuos of variancl ratio for testing the null hypothesis

RO: the effect assignable to treatment j ia tero; versus the alterna-

tive hypothesis H:: the effect assignable to treatment J Is not zero;

for LU j Is

nk I (X. " .)2I(--I) .
1.3

IL j (xi, "xi. x 4 - x .. )*i(n-l)(k-l)

In order for this ratio to brve an r distribution with (n-1) and

(k-l)(n-l) degrees of freedom, it is sufficient that the xij be

randw Independent observations from normal populations with the same

variances. It is also necessary to assuse that the effects of blocks

ad treatments are additive. Am:aytlc&lY, this last assumption

states that the mews of the normal population associated vith the IYdI-

vidual calls are assumed to be of the form:

vith

M i - 0 and ET 0.

The pammter I it the average of all the population mmes, jS I is

the average effect assignable to block i. The assumtion of additi-

vity implies that if block i gives rise to a measurement ten units

greater than the measurement on the same treatment In sown other block,

then any other moasuren-int in block 1 will be ten units larger (in

the population mean) tawn the correaponding measurement in the other

block.



It can be shown that the sums of squares on the right hand sid of

equation 1.2, vhen ivided by a 2 , the co n population variance,

axv each inependently distrbutea by chi-Gquare lava vith (k-l)(n-l),

(k-i) and (n-i) and 1 degrees of freedom respectively. It follows,

then, tbat under suitable assumptions expression 1.3 In distributed

according to an F with (L-i) and (k-l)(n-i) degrees of freedom.

Instead of the F ratio, Pitman (121 considered the ratio

w - 1 ETetmnt~
2

This ratio will now be denoted by W - B/(B + C). Under the above

assuptions B and C when divided by cr2 are independently distri-

buted as X' with (n-1) and (k-l)(n-l) degrees of freedom respec-

tively. It follove that W has a beta distribution with (n-i) and

(k-1)(n-1) degrees of freedom.

Pitman [12) treated the problem of testing the null hypothesis

that the treatments are all equal without making any assumption about

the X . If the null hypothesis is in fact true, the value of W

observed Is the result of the tre&tment*, nov mere labels, being dis-

tributed at ranam to the various individuals in the blocks.

An equally likely value for W would arise if the observed res-

ponsee were shuff2Ad within the blocks. Conaider for example the case

of three treatimenta and--------------..... Ute oxv given in Table

1.1(a). The valua of W from this sct of obseva ions lis 21/6.

If the n4U1 hypothesis Is true then the orserved values 14, 2, -3 in

Block 1 nigt have apeared in the order 2, -3, i, say, and Blocks

4



P .3 might have res-1 1, .2, 2 and 0, -1, 3 respectivelY as

given in Tible 1.1(b). After this shuffling, W - 57/65. It is to

td noted that the block sums of squares re axne unchanged under sunh

eshuffling. The sums of squares whJch do vary are treatmnz. and

Tabla 1.1

Treatments Treatments

Blocks 1 2 Blocks 1 2

1 4 2 -3 1 2 -3 4.

2 2 -2 1 2 1 -2 2

1 0 3 -1 0 -1 3

Treatment sun of squares- 14 38

Residual sum of squares: 88/3 16/3

(a ) (b)

residmal. The number of different vales that W can taX* on for

this exaple is exactly the number of ways in which the blocks can be

reshuffled in such a way that the treatmnt msans are fhfferent from

every other set of treatwent means obtained from the other shufflJngs.

The number of values of W, each value being equally likely, for the

case of n treatments and k blocks is the number of ways that n

numbers can be arranged (n!) raised to the power k, the number of

blocks. These (n!)k values of W contain multiplicities because

many of the shufflings vifil give ribe to what is equivalent to inter-

changing the columns of numbers In Table 1.1(a). The nnmber of such

different interchanges is n!. Thus the number of dlstinct equally



lixely values of W is &t most (nI)k/n ' or (n!) k -1. At aost refers

to accidenta., equalities of W due to the data being rounded. An

exac± tent fr fA, _ 1 bt lo "i*at& vimck-

veii ,e~u of W from the experimeut vith all the other values of i

from the (n.) i?"Zilings. If not more than some pre-assigncrd

of thea (n!)k vLlues of W exceed the experimental vLz-m one re-

jects the null hypothesis &t the c% level. To avoid the comutation

required to find all these values of W, P4.mtan Investigated the dis-

tribution of W wben the underlying distribution devitt es from noreality.

Theie are two different d4strlbutions of V being &iscuased. e is

the distribution of W which is associated with the underlying distri-

bution and hence das nor depmd on the individual vlues of the "A016.

1he other Is the distribution of W obtalned ftr1a the permatations and

depends directly on the sample. These distributions will be denoted

by %mconitlonal and conditional respectively.

Under the aseumption that the underlying distribution is normal,

the unconditiz.Al d1stribution of W is a beta with (n-,l) and

(k-l)(l) degrees of freedom. If V deviated very little from the

beta distribution for any reasonabse umderlying distribution, then one

,uld assume normlity" and proceed to use the F test without too

jwh concern, since a "0% test" would, in gmnezwl, reject really

true null hlpotheses approximtely a% of the time.

It ras shown by Eden and Yatei, [3J that there was good agreement

betwen the beta distribution and the conditional distribution of V

in a partIcular &A9lix, experiment. Pitmn (12) obtained the first
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four permutat!.-n moments of V i., torms of' the first fou, moments

parntllels Pitmns's, obtained only the first two moments. By looking

at the moments, Pitman "s able to drav certain conclusions about the

distribution of W aa t* underlying distribution deviates from

normality. Pitman's ieento can be mde to look simpler and hence

easier to study by introducing a change of notation. Let

2 -

I~ (z -

k, . 9o 03 hero! k .

k

w~ j here k - - x3

iE(x x )
. - I.- 2k~ hj - oG1 a vhere k~j . " 30 2

The ndtation E" is ueed to denote sumstion over all subacripts

contained inaid the summation omitting all tew-m of the su-ation for

which the subscripts are e Auai. Further 'avep" 1. ased to indicete

that the avere is bei n taken over permutations %-ithin blo(ks. ith

these notational changes Pitan's moments nov apprear as

avep(W) -

k
- t.., ,

2
, L . C2

2. 22 "'V~JUII -k (n-l) 2 02

kk
avap((W 2 

4
(n-l)(n-) r a

31 kk,.
I~.Ak (j~2)3
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k k 2 2

avef((_ (I) C8 P
k4~-) (n)

4  
-itl 2

p 1p

k k 4448 El 2 2 2 2 f k
48 Z ,,po' , a (n-a)(,a-2)(,-3)

I p

96(n-2) E., ,Ia

2 )4
(1a)

These formula cu be sisplified somewbat by letting T" G

Also instead cf giving the first four moitvnts of W we will write down

cwumlants of kW. These are tive average, variance, skewness and elonga-

tion (or kuirtosis).

av,p(kw) - 1

varp(w) - avep((kW - avep(m,) 3 - - T;?

skp(kW ) - vep((kW - vep, W), 3) 8 k,,T2T2r2 + k'(,,a ln,- " T

..)2 : qr E g - T- 3p ,

elopkw - avep(kW - )avep(w)) 4 3k'vep&W - aep(kW) )2

k 2~
- n-Y~n~) Tpi~ T.'TfTT +

q + ) 3 1 j, q r a

k(")± 2 4' 4 OT k 3 k 2
n

5
(n~l) p pq pq njI q p q I r
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Of these four cuinulants of W -- average, vsriaace, skewness and elon-

gation -- only the average is Independent of the particular observations

trrom the experiment.

The mean and variance of a beta distribution with (n-1) and

(k-l)(n-l) degrees of freedom ari 1 and 2l- respecti',ely.
k k 2 (kn -k+2)

The average value of W obtained from randonization Is thus the naxne

as 'the average value for the beta distribution with the proper number

of degrees of freedom. When the variance of the beta distribution in

equated to the variance of W one gets the condition

2 k 22 . 2 -l
n-T t p q k-- - ki-2

2 2 1
When al tL block variances are equa then T2 - T 2- for 1 < p,p q a

q < k. Thus the left hand side for equal block variances becomes

2 2(k-1)

,(n-i) kI 2 n-l)

The right hand side of the equation can be written as

which is always smalier than 2k- but by an amount which becomes

sma.l as k and n increase. The value of the left hand side de-

creases from if-
1  

to zeri as one block variance becomes much larger

and it tokaa thl. a, U, the thue o WO,.,

variance of W is near a miximum, the conditlonal variance agrees well

with the variance of the appropriate oeta distribution.

If a few or the block variances ar very large relative to the
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others, then the conditional variance of W vIll be scaller than the

vsarimrce of the corresponding bet. distribution. Pitmwn sgg-cts three

possibilities when this arises:

(I) Discard the blocks which have large variance relative to the other

blocks.

(ii) Fit a beta distribution by the use of the first two moments of W

(Investigted b- Welch [i1]). This will mean a decrease in the

number of degree' of freedom in the beta distribution v .ch applies

under ncrxality.

(iLi) Mlake all block variances equal. This of' course requires the cal-

culation of each of the block variances and the adjustment of the

observations in each block to make the necessary changes in the

block variances.

One should not consider doing (I), (ii), or (i) if suitable

normlity assumptions can be made, even if the block variances seem to

be very ,mequal.

Shewart c4 Winters [9] tested Student's z distribution for

the two-samile problem by taking - les from nora.!, rctangular and

rigit-trianglar distributions and found that there vas only satisfac-

tory agraement for the cease of the sample from the norm-1 population.

Pearson [7] did a similar analy3s for samples drawn from several non-

i-' __-_ .... t--str j.uticniza 'uL his resuits were soievhat Inconclu-

sive. Rider f8) has treated the case of samples from U-shaped dis-

tribations and Baker (11 has similarly trented theoretical non-hosogeneous

popul tions.
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2
If the block variances a2 are all equal, or approximately equal,

the second moment of W under randowtzation theory will be too large,

but this has an appreciable effect only when k and n are small.

Tae variance of W is fair'ly insensitiie to changes in the values of

the block variances when k is large. Pitmn recomends thet the

second moment of W be calculated and compared %ith the variance of

the appropriate beta distribution when k or n is less than 5.

Pitman further remarks that If a beta distribution Is fitted by means

of the first two moments of W, the third and fourth mcnnts a,e likely

to agree vel'. provided that the second moment is ot too small. For

equal block variances, fitting a beta distribution in this manner givem

a good approximation provided k(n-l) is not too small.

3. Some Further Remarks

Besides these results of Pitman, other writers have investigated

the analysis of variance procedure when the underlying distribution is

non -norml .

It is often suggested that before making an analysis of veziance

test it is wise first to aks a test for homogeneity of variances (e.g.

Bartlett's test). Box [2] shows that when little is known of the form

of the underlying distribution, making such a test Is often more dan-

gerous thai. o0U ting it. Box further states that whbn thor -,e

treatment sizes ki and the variances from treatment to treatment are

suspected of beinE unequal, then It seeme that the usuall aralysis of

variance procedure that says to pool the vi&hln treatment estimates
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shouiLl be replaced by a !riterion that cqploys a weighted estimate of

,aen treatment variance as suggested ty Welch [15J id by Jaiwo [6].

To illustrate this, assume a vituat of. in which ve hte" n treatments,

the I treatment havin6 k i units. If a, Is the estimate of

v rlance for the 1 th treatment, xi. is the mean of the ith treat-
M k ki

met and x.. - k k x/ 1 CIij is the oerLL ean. then the

criterion would be itVi(,X. - x..) 2  
where v i - ki/s2, in place of

the azsuQ- pooled eetimpkte criterion / x 2/S. whr

2. n 2 /1
s 2O , j ki. In fact Box &u ie~ts that the criterion

based on a weighted est mate of the betveen treatment varinnce might

even be used for the case of equal groups where heterogeneity of variance

n
mig-t occur. The criterion would be k(Xl f..1 instead of

the usual - x 2/ because it se,; uore reasonable to wegh

those treatment eene which have large within treatment vsriaces less

than those treatments which have small within vreatment variances. This

criterion see&& sensible to use if one first coaputed the covaria ce

betwen(x - x and s and found it to be poeitive, as, it is

hoped, would usually be the case.
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Chapter 2

DYADS AND DYADICS POP T99 MULTIDIMJNSIOMAL PROBLUM

2.1 T-o Treatment Multidimensimal Case

Consider a tve-vay lAout as in Chapter 1 vith k blocks but

with only two treatments per block. ouppose now that several charac-

teristics are measured an each indlvldwl, Instead of but ove, as ws

the case vith the work of Pltm and Welch. The two-wW classificat±o

en be displayed .s fo]Lo:

BWCK3 1 2

2 x21  x22

kk vd xk2

Vaere xlji I - I, 2, ... , k; J - ., 2 is the measu'ement of the

response of the jth reatmenL applied to an element in the I t
l block

and ia, In genere1, a m-dimensiorial vector. The kt h  
conponent of

x I is the response of the kt h  
character measuxve on the ith block

subject to the jth treatment, Detailed consideration here is limited

+.o , tvc, trranrta, but tn.e methods used should generalize tc Incliwa

nre then two treatments. Thus it might be possible to find recultL.

for mut id!rw.non1 nxaly6~s of variance that are suitably analogous

to Pitman's results in the unila tea+ case-
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2.2 Multidimensional Mathematical Tools

One problem that inmmdiately arises in the mltidinensional case

is that of understanding the meaning of what, in a single dimension,

was a sum of squares. For example, we have to be able to &enerslize
k n ..2

the meaning of such things as (x x) when the x and

x are m-dimensicnal vectors. It is also necessary to define them

in such a way that they are converient to use. One way of defining

sums of squares of vectors was treated by Tukey 113]. He makes use

of quantities called (by Gibbs [4]) dyads and dyadlcs. Dyads are

formed by the "product" of vectors in a way best shown by the following

example:
ILaa2 alIb2

( a l ) b l ) ( & ,  b 2 ) a t 2 b 1  - b b -

The sum of two or more dymds is called a dyadic. This addition to

form a dyadic is performed ceeponentwistv:

a ab c Z a 1  1 b I + b 2 C2

(44e f)t z:) (++ e Cd2f e2 f2 dl + 2 l + 2 fl +  f

h1  i 1  g 2  i2 ) g g 2  h 1 +h 2  l k 2/

These operations nead not of course be restricted to two or three

dimensiona, vectors. For an analysis f vxrixnP sn +h v.. tc-,1 jnztd

of ocalars, we may replace the sum of squares by e dyadic of sums of

squares and cros-producte. The sum of squares resultlng from a set

2of k m-dimens~onali vectors vi_ be a ,dya&ic wi h a components.



An an example consider a design consisting of only two experiments

with two measurements being taken in each experiment. Suppose that the

results are as folJowE:

Epertment

Character 1 ii

A 5 3

B 3 1

The dyad which in the contribution to the total sums of sqtuares and

croon products from the first experiment is the product of the vector

(5, 3) with itself. Thus the total sums -of-squzare a-and-cross -products

8 is the dyadic with four components

- 5,3).(5,3) + (2,l).(2,l) - 2 15 _ (1, 2) (29 1 )

(15 9 ) 1 17 10

2.3 DPy as Applied to a 2 x k Experiment in a Dimensions

We will now proceed to apply these riles of operatilo of dyads

and dyadics to the 2k vectors given in section 2.1. Let ci be

the difference vector (x U - xi2) Purthermore let ci for

1 < i <k be the set of difference vectors when the xij aro permuted

within block i. In this way, ei . +1 if the difference vector is as

found fr)m the observed data mnd -1 if the dilference vector ir so

found after interchunialng the. vtlr = : " tI'. eum o-

squares" of the differeeics for such an arrangement can be partitio:ied

as follows:



k k

c c FSID~UAL

k 2
Let A, -(C,,3 :ic and C - R=9I3"JAL

Purther let us denote the componen,.& of the m-dimensional vector f Ic

by (c a 1 , lEa1 2, .. C aIn). Then A Is a dyaic witb 
2  

terms

obtsined by adding k dyads, the ith one of which is

a 21ai iImai

k k k
ia

2
l i allai2 ,,, ,a,

k k a

(,.I l 12 .1 1
A I)

j F I il'im i~ia2am " El im

Lo to, other 0and, is a dyad which is rormed by tak.iz - times

the product of a vector D by itself where D Is obtained by suming

the x-dImnsio.i vector3 i¢ over the k blocks.
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k k k

k k ... k

k 1  kE e)

k k k k
k k k 2k

rDD I - l)(i- ia1) (. ca) .. a Oi sa

k k k
(i_ -_____ )(i_______ (___ t__ ________________ ii-I. 

- )  i ni,}

Pitnan considered, in the univariate case, what would, in the

present notation, be denoted by B/(O + C) where each e would

then ba a scalar. Since B + C - A, the ratio my also be written

B/A. This ratio in the uivariate case is merely a (diamnsionless)

numrlca quantity. The "ratio" which will be used here in the multi-

dimensional situation is B/A looked at in such a way that A remains

constant. A convenient constant for A is the m x m dyadic whose

illaonal eiements are all one and whose off diagonel elemwnts am aleL

zero. A further discussion of this "ratio" BiA is given in Chapter

3. It would then be enough to compute moments of this new dyed.

Furtnermore. one would not need to attimpt to attach a meaning to the

:ia10:: or an arbitinry dyad and an arbitrary dyadic.

This simplification requires that c1 ai, I - 1, 2, .. , k and
k

1, 2, ... L ce ren~aced by new nurnbera 1aij such that 4 a' " 1
Rc -j±1 i]p

for 1 < p < m and a; a; - 0 for 1 < p j q < Q. Tce class-- - 1 tF In



trnsfjrmutiohs whch i xmet thesF require 'ntr is a linear one. 7or

the speci&. 'ae. of two d-.r-,n,,ions a traneformation satisfy .lg these

requirements Is given by

ail ll and a -2-- 2.1

L 21 2

P-1 P1

Thls in only one of many transformations such that

k k k
E -12 p1: 2 - 1 and x a. The claas of tranaforma-

tons, of whi.-h the transformation given by equations 2.1 is a member,

conlists of 0.1 A ' A* such chatp1' p2

A* .a 1 Cos a- ap2 sine

2.2

_* - a' sin + a",p cos6
P2 p2 P2

wvhre 0 < e < 2x. Mkathemtica definitions for the class of trmne-

formations for the 4;,aursl m-dimensional situation follow directly

from the two dimensional definition given by 2.1 and 2.2.



1)iS;UU53lor OF TH1 cfil'-Lp" io

Consider for the present the gener~l uni'varlate case of i

treatments in k blocks as discussed by Pitman. We are given

the measurements

X X IxI

x21 x22 . 2n

2 l xk2 Xkn

where xij ia the observed response of the tth block Lubjected to

the j " treatment. The mst general quadratt! form relating these

xls is given by

k n k n

I Z IE -I a zajxzj 3.1

In order for Q to be invariant under interchanges (shuffling) of

blocks among themselves and of treatments among themselves, ert&an

conditions involving the ai ij are necessary. To determine these

conditions, suppose that JJ is fixed. All ters in Q for which

this Is true are

k k k k

£~ Lan~jjxji - I!a1jUxx,- + tj"'axjLx.j 3.:

Suppose all but two of Zhe xij are zero. Furt-her, suppose that the

tw( non-zero x, 's sl pear in the same block. Let us deiiote these
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X by %p and x ,J. The flrit sUtnstion ( Pr I be d , ted by

E, ) on the ri.ght hiurd side of n~a"Ll

non-zero term a pjpjx Xpj. Iuppose now the blocks are ihulfleu iio

that block p no longer contains the two noh-z.-ro N s1 The value
,ij

of the only non-zero term in T1  wiLl now be a F J P j x , where

block p' is now the block containijg the non-zero x e 8. Unless

p - a,, - a J, Q will not retain unchanged under shuffling

of the blocks. If we now suppose again that only two of the x j'a

are no-zero but this time assume that tflese two non-zero x,,,$ are

in two separate blocks, the second scumation (denoted by L2 ) on the

right hand side of equation 3. I will have exactly two non-zero ternis

x x and q,x,,. Aain, supposing that the blocks are

shuffled, it is necessary that the coefficients aqJ and a,,j be

constant for fixed jJ. Thus it Is necessary that equation 3.2 be

of the form

k k k kI= ii~s~lElj~g -ajj lIIjj , b,, ,f,,[ijl .

By reversing tne roles of the blocks and treatments and rei-eating the

above argument it follows that a general quadratic form satisfying

the required syi-*try with respect to blocks and treatments can be

partitioned as follows:

k n n k k n k n
rI j-:xi + bI - .' 3.Ellx 3.4



3 .2 The Adeq .ic f tudci. / p rov de d A I 0 SC a a SI

From the preceding argu nts on the partit n .ng of a quadratlc

form it foilovc that tl)e total Eum of squares iI the x jU ran be

partitioned into four parts. With so3e algebraic m, nipulation the

partitioning can be reduced to a sum of squares involving the mean of

the x o's, one in'oiving the noean of the treatentb (x.j), one

irvolving the meane of the Olocks (x1 .) and finally one involving

both the treatment means and the block means (residual or error oIm

of squares). Without any prior information on the mean of the undar-

l)ing population, any cr.terion whi,:ch tests for the difference between

treatments should be Indepcnaent of the overall iean. Since, moreover,

randoozations within blocks leave the block sum of squores unchanged,

we need concern ourselves only with a criteron Involving the treatment

sum of squares and thet error sum of squares. These two sum of squares

were denoted by B &nd C in Chapter 2. A ratio involving B and

C is chosen arbitrarily, follovi~n the Pitman/ approach. The most

general. ratio Involving F ana C Is o' the form (a'B + Vci(B + 6C).

Consider for the purpose of I ist.Ret I P the e-_cim-l case -her

ontly two treatments are under test and where uniy a single response ie

tealng intasured. Quc'n a that de cale the meaburements such that

B + C 1. 'We wlUL derote El by P5  and C by C, uw ider this

b-.ppcse azi n xperi'!i. :sc t f 'ir k with two treatmentLu

p IOCK ar o. ,l t O eaeh treat:nt riL eaI h block. 7tie

re-po u:es .ne exore-a o'Y f lve numbers which are the differences
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of the yields In the five blocks. Furthermore, these five differences,

call them atP can be displayed aa points on a line as shown in Figure

3.1. If we now change a.l the sijpt of the a,, ve obtain five more

yt5 32

Figure 3.1

points to place on the line which are the same distance from 0 in

the opposite direction as ahowr by Figure 3.2. By a resealing of

i32

Figure 3.2

these differonces a we cen find a unit of measuremen, such that

5 a - 1.
i.1l

WIhen this has been done, any particular randomization R giviig rise
IF P IPI a ),where (E to +1

o differences (ias 3 (+41 1

or -1 (depending on whether a I  ocurs without rt with a ch&ne of

sign) i such that 5 '-(fa )2 1. T h sum of squares 2' a)i 2

is B + C and any criterion based on the ai other than one which

has R + C - I (or soge other convenient constant) or a multiple of

B + C in the denomtnator will have a Oi'fere .t eenozinator for ea .h

rar.domn.tlon chosen. The niuerator can have any linear combination

of I anld c a) e. A reasonable criterion iS thus of the
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form (aB + iC)/(B + C). However, by finding the randomization

cumulants for a special case of this criterion, namely 3,i(B + C) or

B/A scaled such that A - 1, one can then find the randomizatlon

cumulants for the rrore general criterion (CM + PC)/A. The .ormulas

relating the randomization cumulants for the general criterion (aB + VC)/A

in terms of the cumulacts for B/A are now derived.

avep(aB + OC) - a avep(B) + j avep(C)

. a avep(B) + 0 avep[1 - B)

a (a - t) avp(B) +

varp(ali + PC) - varp((a - P)B)

0 (a - 0) 2 varp(B)

skep(oa + OC] - skep((a - ))

_ (a - 0)3 skep(B)

elopfaB + Cc) - elopt(a - P)B)

- (ax - 0) Pelop(B)

3.3 Mutivariate Analog of B/A

In the multiresponse situation the condition B + C - 1 becomes

B + C - I where, for the case of m responses, I is a m x m dyad

with l's on the diagonal and O's elsewhere. Again it will make

no dif-erence whether we are considering BI (B under the condition

B + C - I) or CI or some linear combination of BI and CT' As

was the case in the univariate situation, the randotizaton cumulants

for the criterior B with suitable staling so that A - I are suffi-

cient for obtaining the cumu~its of any arbitrary linear zonbination

of B and C.



@veP(a3B + 00,) ovep(CID + P(l - )p

=- - aa( Apr

inx + (a - 91) avnp(B)

va.rp(~0 C) - ar(a3+ p(r -3)

- w(( - 1) 4II

-Lr Is p(c, - P)B)

- tavep((a - is)B.(a - P)B) -vp( A I .aveP(@c - A)B)

_ _C(ip)2B.8) _-c 0')2ae().vp

a (a - 0) 2 faveP(B-B) - &e()&e(~

- (a- 0) 2varp(BI
lkPCB+ 0c] - skep(aB + 03(1 - B))

- "-kPC (a 15p)B + II)

a kepC(a -P)B)

&Y- Ivp~ &Y aOP((at - A)B) ).(ar - 0S)B - £vep((a - 031

((a - o0)B - avep( (a - 15)n13)
*avep((a f- ( m vep(B) ].(ax - ft)tB - vpB

(al - 0.)[B - avep(B)]

0,1 0 )3&veP( (B avap B) ).(B - avep(D) .(B - avopf B))

(a skep(B)

a1Qp((ZB + PC) - 6.0lB+ A(I - B)]

- eIop((cz - ATh + 01)

- elop((a - ph]

- ilel(i~-y .vp(-)][(a4A)B - vp x-jB

L gL-p((cu.O)B) J. j(a.-)B a- p C-OB
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& Vep((C-P)B - ILYep(B) ].(a-*l)[B - savep(B) 1.(tA4)[B - vap(BI 1.

1-)D- av 5() 1) - 3(a-0)f Z B)u 2 Vap(B)

- .0)~ 4 &-p((13 -avap(B)j).(B - 61fup(IS)).(B - avap(B)

(B - avep(3) )) 3(CI-p) 14VV varp(BrpU

(a - 0)4elop(BJ

Tkw d.srivation of the first four cumuluants of B for a-11 permiuta-

tions of Fign is given in Chapter Is. In keeping with the notation of

Chaptor 2, the dyad B Is formed by tk.Ing the product or tb* voctor
k

of es~ of differences, t c, with itself, divided by k, the nuaaber

of Ulocks. This "a be written as

Sk k

B - c

The results of Chapter 4 are:

aye"pBJ - j7pEa *C -zA

va~rp(B) - 12 E" (c *c *cp.c q+ c oc q*c *c P)
k pqq pqq

skep(D) - 3 " (C *c c *eqc ).(c q +C r*c q).(cr*c +cp.u d
k p,q,r-1pqqp rq rppr

e'OPNI~ - q -((c 'c + c ' - )'(c .c cr*cq).(cr's .c ed

(ca*c P+ c ..c ) + (Cc .c + c q c p)O(ce*c p+ c P*c.).(C *cr+ cr q)

(crcs+ Csacr) + (cp ac q+ C q*c p ).(cr4 cx+ CO'Scr ).(c a c p+ c P.cs).

Ic

(Cp*q+ a. c c *c c J.p~
,Icr pqc V q qp q g



3.4 iavarlit; a u 1 Cusulants over Rotat!on of F

In order to provide a procelu, fci- testing whether, n any given

instance, the wo treavTmntn are really alike, it is desirable to be able

to compute a suitabLe qiuntity from the data and compare it with some

predetermined Yalue. The quantity that is computed In each instnLe

shotnid be tndependent of the particular -hoice of coord~nate5 In terlas

of which the rebponses are expresBed. The e'ements of the dyad B,

even w th the reastrletion Lhat A be equal to a given constant, wil.

depand on the choice of the transformation used to me A the parti-

cular constant we wish (moot conveniently 1). Hovevwr the trace of B

is independent of thn choice of transfnration which makes A equaj

to mom con.,enlte cunstu. T'Mi6 0ow ihown.

For convenience ii notation let te observations after e ]Lng to

awke A- I be given by (aI, bi) in block I. Then

S k 2 k k )

k k

trace B k {(illa + ( b]

1 t nu ov * rl tra -, a .AUu~diln ny LYf kal, b*) whicn

hat beon foitted 00 hlth an annie 0 fi om (a, b). Then

a a coo 6- b' sin 6

- a' sin 0 + 1b' COB 9
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Rence

k k
trace D - f'E 1 (a cos 0 - b Otn G) * Z (a' ain 6 + b' -os

k 2 2 k 2 k k
. (ULe;) cot 9 + (, Lbj) ain o - (4, (1 ,) 0 ocm 8

k )2 )O k 2 k+ (, sm) e si (n Lb,) oo2G , 2(co .+ )(1.b,)con 9 sin 0

k 2 k

-+ (, la) .

Thu. trace B does not depend on the angl.- 0 through which the axes

were rotated &ad is therefoxe Independent of the orientation of the

repm me variables.

To obtain the cumilants of trace 3 over "rmutations we need tr.

define some new quantities. Let L denote a linear form of the

elements of B. Here 0 ia a double subscript. In particular, if

La is such that LaBais trace B. then one only needs to express

the persuatation cumulants of LO in terms of the permutation cumulants

of D. Denoting the elemnts of :U by L11 L12' L211 L22 and th.se

of A by B1, B32, 321, 3,, we have

&ve;,(1 bs.5 - vep(L 1.b1. + L1B-2+ L2 1 B2 1 + L2 2 B2 2 )

LiU avep(B11) + 'i- ap('12) + L21 avep(B2 ) + L,, avep(- 2 ) 3.5

The riht-hand .iue of 3.5 is equls .ent to L, opersting on avep(B).

Ths we have

avep( JI , (&veP(b) )C . 3.6
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Stmilariy vv~rp(I-_,,,j Ltj h~~ rp( B) )O .

e~~t~~ -lLLL 7LSCecJP(3) )o74 3.9

Thus the first four permutation cusuleifts of trace B can be obtained

from 3.6, $-7, j.8 ad 3.9 by replacing the oratoro Li Lp,

L. and L5by an operator wtbich has elements L. a L22 . and

L12 -L21 - 0.

- /1 D) 3.10

1 '.. L 1 0'

var-(trace . c.c.cC ) 

,2 k 2
-~E' (a pa q+ bb) 31

k p~qrp
8 k'

secep(trace B) - " (a a r b b ) (a a + b b )(a a + b b 1
Q~~,u p q p p r qa r s r

A4 k-

4. V (a + b pb q)43.13

k n.OnjP

The ease of computation of the pertutetion cumulmnte of traca B

higher than the firat will deperd on our ability to write the. in a

way vhich requires the summing cf a amali number of terms rather than
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as they are given in 3.11p J.12 and 3.13. Rirnce trace B is

invar1at with rest .o the orientation of the a&, b) axes it

seems dealrale to copuite t2e cumulanto of B Svers over rota-

tiocs of the coordiriat-e systeia to which the vectoxrdsfiniag B are

referred. In tkhLis wa the elemnts *f these averaed cumilants of

B viii be Invariant in the some vy that tz-ace B Is invariant.

It turns out that the elements of the averaged culants of 3 can

all be expresaed as linear combinations of seven basic invarleats.

These in riazants are:

k 2 22 2 k 2~) 2 (2 22

1A (a +a p+b)j( +b

x" + Ub j~ and E"( -

Sim*

awip(trace B) , ave avep(trace B;
a

- ave l~avep(BJ\.
a

and it can be xbovn in a *Iwilar fashb= tnit

varp(tmc.m 1) .'. Lj,[&Ve vvrp(bi3

UU

ardelop(trace 3) - 1-1 La'' elc~ f

Ithen the -uMuLWtA of t:rece E a be found dirn c .y from the rerm't-

tior ciw~sysote of , ere4sd avor *-i orernt! "s of the md-rling

coordinate system~. In this -auy tht cuxr~iantu of trace b Lou~ to
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expressed an linear cobinatlons cf the seven basic invariants given

above. All these Invariants can be computed qickly and easily in

any specific case.

3.5 Derivation of Cumulants of Trace B in Terms of a Set of Invariants

The formulas 3 .1, 3.12 and 3.13 for the second, third and

fourth cumuJAnts of trace B can be expressed in the more cuta-

tionally conve'ient uy deacribed in Section 3. by applying the

results of Chapter 5. One can easily write these cumlarIts In terms

of the set of Invalranto that are obtained for the four cuwulants of

B averaed over -rotation.

avep(trace B) -

vs~(rac L - k 2
varp~~tra-t B) I2f(apaq pbq

2 k 2 2 b 22
* ~~(Pa4 p pq q pbbq

S2 22 2k2 2 k 2 2 2

Va +k. b Z(a + b-) + ( 1+

2 k 2  2 P,
2 -E(.+b 3.17

TLw results can also be arrived at directl, wthout the use of the

results of Chapter 5, for

kk "- X 14a u + b, b ) =(1 - 4 ) _ X + (1 E b
p pq 11q P. P P I

- +
I P



akep(trace B) L ( a + rptq(mn + b Pb ) a a f b b)
pq p ~ 4r r qr

R~ ~22 2 2 2 2b2
& ~aa +3a n b ab +3 ab a bb +b b~

S3x pqr p q r - p pq qr p q1

-81( k 2 q - k 2 -, (2b) + j. a2+2)3
2~ 23b i . 222 ) _, 23b

a ~b 2+ (a+b') + I t 4a+b') 2+ k"%/-2+b)31

2 - 2 + 3.1
ki p p i p

Thbis result also can be obtained directly for

22 22 b2
+'aa +3 aatb + 3 ababb bbb 2

pqr pqq ppq qr p qr

k. 42 K 6 k 2 2 k~~k
3- l-3Ea Xf - 3 .a aob-6 Z*- 3 1k 3ahb2

Sp .p p pqq I. ~p i p p

.3 - 6 ~ab ' - 3 1: b4 + 1-3 bb b~pp q lpp qq I pq ~p
k 6_ k k _ kab2

3 4 +a~ 21aE 3a E 42. f3 E a b + . 6  Y - aip Ip IP pP ~p jpp r 1p

.3~2b2 3k 
4 .L2 4 k3L2b4 3 k 4  k2 b 6

.2 -3 a4 + b2 +b)+ 2 (a 3& b +3a2b4 +b')
p p p P p p p p p p

- - 2~ 222k2 2 2 3
P a+ 2Za + b



eloptrace B) E"( a + b b )(a a + b br)(a a b b )(a a +b b)Ipq p q p r pr q~ 6 Q r s r 8

- t~~"(aa -b32 -)

.fb b

k p q r a p qr r s p q q r r s pqqrras

+ a b a b 2 .b
2 b 2 b

2 ) - "(, +bb)
4

p p q qrapqp r a k pq + b q

it22 2 4 k b3
V4~-~8 1%a aa -1!6 E"a a + 48 Ea a a b a b - 16 EVa~b

I p qrs p  q q pras p p q q

k' 2 k2b2-' 2 k+ .48 Va ab a b b -16 VaoD + --,448 Z'a b a b a b a b
pq q r p pq q p po qrraa

2 02 kk. 3)2,

-16 a-b -&'b ) + ,j48 V'a b a b b-- 16 Va b b)
I ppq 1 p pq qrs 1 p p qq

k"

1 k b~% k,,+ -4 E"b 16 X b bb

k I p I

From Table 5.7 Chapter 5,one then obtains

SlOP(trace 3) - 1 (8+8 + 2 b 2 2P-24,4io)T~ + (1204 348-48<120)

k

k 2 2 3 -9- 74~-95-3 4K, 2 2 4
r(a+b') + ((- +b ) + ,%68 +6+-5)

P P

k 2 2 4
fLa b ]+ (2O.144+&84+2o)E"(a a + b b )+ (-12-6-204-8-6-12)

iP p pq p i

V'(a b -b a )
1 pq P

W ijf 8~ac+b
2 ) _2 (2b) 12 i(a.,b')" +AL(s b~

1P P p P I2 p

+5 a +b b 3)4 ( b -b a ) .1
1 pq P q p p q



- 33 -

k 4 k 6 k 8
£"aa2a, -I 6 sa8, - 6 E a (7a)
3. p q r ti v I p I p P

k 2 P 6 2 4 .' 'A a~a b b - -4 L a +Z £4.2 .I 4 2 .
S r - S P 1 P P p p -

p pq qrr a ~pp I pp+ pp . p ~p I pq

rab4, o a .-- &1, + 63(1 ': A)
pp qqr ri a ' p P p

2 ~ ~ 2 ab , 12b2 k~~+
pp 1sIpp I , I pp

k-.9b2b2212 4 ~b +d 4
6  

2

Ip q r s p p P P3

When these forulas are substituted in the formula for elop(trace 3)

and the terms &.re zollocted the result checks wit, eqUation 3.17.
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C!hapter 4#

DMRIVATION OF C'UWJLANTS FOR t ULNDE RA:DOATION

4.1 Some reivarks c Notation

q The 4uantlty for which Pitaman found the moments corresponds to

What is caled in Chapter 2 in the multi4Amensional situation.
A

This 'ratio' reduces to 3 itself Vhen considered with respect to

a itable class of transforeltions with A - I, as deecribed in

Chapter 2. In the tvo dimensional case this can be written, with

respect to a particular coordinate system, in the for=.

k o k k

Ik k kb)
k t %-l h 1 - k111

When the trentnents are remdmized over blocks the dyadic B taker

the form

I

rfore proceding with the cumulAnts averaged oer ramzations,

one needs bo" further knowledge on how to work with dyads and dyadlca.

It is nectaor'v ir d.'ing with momets hight-r than the first, to

find avera h ,f ' Kwers' higher than t oe first of dyac id It io

neesary to define the product of two nr more cyads, and h.-nce th-

s5unW't and higher power of Iyadtis. Sitioe a dyad waus formed by taking
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the product of two vectors, the square of a dyad or product of two

dyadB resiilts in a four-dimensionAl array which can be displAyed as

b~ ebf e af be bf

c d g a ah bg bh

ce cf ' de df.

cg oh dg dh 2

These four 2 x 2 arrays really should be thought of as a single

2 x 2 x 2 x 2 array. One might wish to think of the elements of

such an arrmy as forming a 4-di snsional cube with the elements

themselves as vertices. In the sam way higher powers, or more

generally multiple products, can be represented. Further notations

will be defined &s the computatlon of cumulants ?roceeds.

4.2 Cumulanto of B tude' Randoization

The first cumalant of B for the -dlexnsi(ma1 situtio under

randoization is

k k k k
aye C~~e a i2) ' (1 E Ea 2 )( ... M

k -aiilkit- 1, 111111) kitlii iii

)ta k keri~n~ 1i tkp 2(~~) 1Ik
(,. rmutations
within blocks) ""

it i i i2 1 fhi r)

it i~s wi&nr~tou-2 ft1- formine fti chapter "avep" Implies
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To make this expression more mnaaesbie, let us write It In vector

notation by lettIng c, re~re~cnt (a. n AL) Then

avep(B) -avep(~(Ltc .

k k
- .avep(L E I1 : iCI. c )C

k
:: I E c & vep(c E f

Roc&3.1ing noy how c was crigin&Lly derired, At is clear that

avep(c iE i - I

avep(t Ei R(+1) + R- 0 -r0Ifor .1

k k k k
Mmking use of L' a.6an to mean ~xx - ~ xx E E 2

we obtsin

aVep[B) E &Yep icvp

k

Since, frm~ Chapter 2, -.- c therefore avep(D) j7 A.

varpfb) - aVLP(B.B) -aVep(BJ.&Vep(B)

avexAt.~i - ave P(L 1: f , C C : C C 1

h~ k k ki

k P.[~1 J-" r~i'ipT lq
6  ~~~i

k. h k k k
m vtef- L E : c~cC

p*J. q- r-1 eZCp qkr r a sc'r

- k 4
1: 1 1c 1e : c c * + : c *

D~ p 1p p qq .p q

A.,C.Cl 4

kV
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k k

k

*kep(B) . avqp(b - avep(B) ).(Yk - eavep(B) ).(B - gvep(b))

a avep(B.B.B B.avep(B) -Bavp(b)JB avep(B).Db. + B.Avep(B).&vep(1sj

+ avep(B).l.avep(3) + avep(E).avep(B)j.b ave().avep(D).avep(B)

skep(B) - avep~(B.B.B) - avep(B.B).Avep(B) - tvep(1.<np(D).B) - av~p(B).avep(B. B)

+ 2 avep(B)havep(B).avep(B)

k k k k kc
& LPBB1B -avep(l E- p p q~Eq rc E crc . iaatc IE t~uz1 a%

1 k k
E 0PL *c C .0.c *C + '- a c0 -c c,,cq + c .0p~ .0 .0 .0 .

k 3 P-1 pp p p p P),-aJp - p p p pqpq

" c+ C 0 .0 0 *C 0 + C ,0 .0e * C .0 se.0 + 0 .0 .0C *C .0 p c

+ c r: 0 *C c0 c + 0 0 0 0 C ,0+c, 0* C.
qpqp pq p Ppqr pqp psqra+ pp~c~rp qc

+ OlpC r0 c0 q O4C.0 r + 0~ re .0 .0 .qoc-c + 0 .0 .0 .0 .0 .0r

+ v0L *0 coc- .0. C * + c c q .0 *C .0C.r + .0 .0c rC *C r.0r
p qp p pr~ p p p p pp q

* p c~p Cr ~q'-c + 0 p cq'pcq*r + 0p crq- 1Sc qrr

* 0or l q- c0 1.C0 .*0 +C* 0 . 0.0 +0. C . 0



kk k IC

tk.( p!I *~pC c+ pqIcpeCp q.q p~q. 1 pqccq + p~q p ).Ec P- p

k k k

t I, C PC PCO ' C

E"c c PC C C P + V C oc o .0. o.c + Ec oc PC. *cq* PC
q~o p q q q q p, q, -lpp q qr ~-

k kC
+ ,C PC C OCc + E"c .CP c cc PC+E

piq.3 p, . poq q q pq.I.. p 0 oq pq r rp -'.cecep*.op

k k
+ rp(.a ep*D. PC o + E" c e .c PC PCc

P, q-1.. pecqq ~~- p q p rep

+vp o pb. C .0 PC PC .0 PC + C" .c PC PC PC PC PCC* . 0 .
0 p-pqq pp p qq p q-p ppqpp

+ OpoCqp oq~Cq*pSo q +0.c.0.0.cc.Cqc + cp0,C.'c.C.C )

+ x" (cP~C C c * c + c *c * c* 0+c* C. 0
p,q,r-p p r' r' q I. p q 2r cr p q + p cq r r cq p

and
k kC

+C.C.C C +C.C.CC C C C.
,-A~ ppqp*qppqp p ppq qqpp

+ qSp*CpSp C p q +OSpp*qSqp + pcp.c.c.'c.C.C

p,q,r-a r cr cp cpca + .rcrcCoJPca CerC* C )]



k

k

Oq 0p0p + E p,q,rlpqq~rcr

Banco

skp() - L4 Jk-(c.c c ec c -30. e 0 .0 a C .c + 2 C 0C *CCc Cc
k Pp pp p p p pp p p pp pp P

+C. Z"0.. (C. .00,. +0.0 ecO *+Ce O cOC+C O0. OC O 0*CC....
pqpp p q q pppVqp q p p qp pqpq

+0 c*cq .p.0.0.0c +0.09C .0.0,0 pOcq C +0...,. +0..*C p .eeep pccO~ 00

-3 c p*C .c .0 p 0 C .0q - 3 c -c, a0 q0 *C4.0*Cp - 3 C q.0 .cp.0p.c,*'

pp O scp q qc pqo*~ pqq,,p p ceqcpp cep ',ccp,

a p0 C pc p *C q -,0p'c c - C pC *0 *C .0 p C p * C q* *C p- C 0 a0 P*C pC p Cq

cpp 'p Cq cppCq-C qp Cq p Cjp -Cp pqCrqpp Cp pp qp pCq

+ 0. 2 0 c0 q0 C 0'pc' c +0 2 C *.c *cp*cec + c ' *cpcccc c * o 0*c*

+ q pp qp pq pq pq qppppq COC+

p pIp P* q pp'qr pqp ppr'q pqqp ppc~c'q pp

" 2 c .*cc *c *~rCr. + 2 0 .0 .0 c*0 *0 r + cr C q*0 q *0 .0 .+ ) cr~qC'r

qqpppp pp6~ ppqqqrp

0 ( c rc ev .C C .. + .0 z0 .. .0 .0 cil C C0 C0 .0 C0 C*0 1 C
1 p1qr. pt p q q , r p p q;Lq p q r r

p C .0 C0 q0 L 0 .0 C C Pc.C .0 .0cq .0 4* 0 .0 - * C*IC .,0 ,.0 + C * C pC q, .0 r .C 0

pp qr q qo r r g p q



-c .0 .0 .c C C 0 c -. cC . c + c C0 .C *cj 3pq, p q p r q r :1 q p rrq p q grpr

+C, *C ,.v *C C0 + C OC vc oc.C*c.c- + Cy~ *C.C~c

+ c p0 .0 q~ c*cr*C .)

I .(c *c + o 0 ).(o * +0 * oc M.c .C + C C0
.1 p~qr p q p qr rq rp p r

elopjb - avep((P - &Vep(B)).p3 - ayep(B)).(B *. fvep(i)).(B - avepfm)l,

- 3 a'rep((b - av*P(B) )-(D - avep(B) ))avepf(3~ avep(Bfl).(r - avep(]))

ave((B - avep(B) ).(B - avep(D) ).(D - avep(B) ).(B av-etB) ))

*avep(LB.B.BB - avey(LB.3.avep(B)) - avep{3.EBavep(B).BE) avep(B.avep(B).B.B)

- avep(airep(B] .B.B.B) + &avep(B.B.avep(3) ,avep(B]) + aiep(B.avep(5) .B.&vep(B))

" avep(3.avep(B) .avep(B) .3) + aveptavep('I .)5B.Mvep(B))

" &vep(avep(B) .3avep(D) .B) + avep(avep(j.8vep(B] .B.B]

-3 avep(B) .avep(B) .avep(3) .avep(B3 3.

After comaiderable algebraic mnipulatIon the fourth cumilant of

B avreraged over randomizatio2s within blocks can be written as follows:

elap(B) -~- E" ((c .,! +c c We( *c +C *(c e +2 .0 ).(cs.C +C *c.)
.7 p,q..r,a-l pq q p q r rq r a8*r sp p

" (c p cq + cqOC p ).(o* . +0. cp&5).(ooc r+ oc ).(cr c 0 +0 CO

" (c p cq + c qec p )e(creoe + C.*O r)e(Cc . + o *c 8).(cq O r + 0 r.0q)

k
- V (c c + c c Mapcq + C*Cp ).(Cc + cCMe )~ c + C *C) '4.1

?or reference we repeat here the results for the lower cumulants, nomely

3kep(B) - 1 (Cc, 0 + ).(c .o + c *c ).(c +0 + c c 4.
,.5 p,q,r-1 jp q p q r r q rv p p r

varp(BI - + k
q~-l'p' p q pq cp

avep(fl] - j1 1.C.
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Chapter5

DZRVATION OF T CUINAITS OF IN AVVAG&D OVI ROTATIOVS

1. Sam TnTroducetrv PoyrAk

We are interested in averaging the randomizationi (persr~atio2)

cismants of B over rotations of the coordinate system in which the

vectors defining B are expressed, The derivation given below is for

the 2-dimensional case. Let the vector c1  be denoted by (&j. bi)

for 1 < I < k where the si and bi  ar scalars for any 1. Recall

n that if B to looked at In a coordinate eystem such that A is of

the form

1 0

k k 2 k
thon La - b1  , 1 and E ab - 0

1ai m 1.1 ii1

Consider now an arbltraw7 rotation of axes In the (a, b) plane

such that the new coordnates ar denoted by (a' Ib'). 'leen a point

(ai , bi) in the old coordinate system will now be given by (a,, b')

in the new coordinate system where

a ... -' -- '-s +
& I ". mi zz = b i  i9

b - a' sinG +b! coo e

and 0 is the angle betweer the ol and the new axes.

2. Derivation of the Cumulants of 5 Averaed over Rotations

From Chapter 4,



1iii k 2s 2 k

1-1 0 1.

avE - 2 2xk

~~2 2
Ea a' r o' - 2Eab coo s i de +' Ei 0)b sn0

coEua'949 -co 2 d L Z f ,' 0 o Odn o 6) + E 2lf( jo 0 d
FiuI 0 i- x 0 -1 0

Ek 2 22)4 k 2 + bEJ~ b 2cs26

u .2 0 i- 0 1.i2

k 2. k

Also

(rot) i- i b I

and

xv k 2 k 2 2



/ba, =,e~~ (: :(a +b +

aye a-,ep(15) (
(rat)

ave war(IB) ave Irot) (r<ot.) P qjp.:pCC,*" p +q +"  q ,, q . 'P

cp*c *c - (ap, b ).(a, b).5, b ).(aq, b
p) qp0,#q pp q q 1-p q

a a a b a a ab
pq p.q q pq

b a Lb / b a b b'
pq Pq Pq Pq

This product (:an be written as a d . x x e %rray

aaa a a b a La a aL. a
P 1) Pq 1: (1 j qpq p q Pq

a a b a a a b o a t be a b b b
p q p q ) q P q P 9 1 p q p q

Ca aa baab bba a bab
p p q P qPq Pq ) 4 p qP q

b a U a b a b b ' b a b b b bp q p q q q q p q p q p q

This product of two d4yade contaits eicwntb of eix ,dsttnct types:

(1) a ; (2) fta ab ; (3) apbpb ; (Ii) ab
p q p qbq p) q ( pq

P .1q P q

cp.c qC qC p, the product of dyads fii the variance of B, can aivo be

writte n &s a 2 x 2 x c x array anu the distinct ielement5 appearing

in such an array are identi-al with those above. We will now consido2r

the e 'fect on the elements (1) to (6) when the coordinate system

(a, b) is rotated througJh ar arbitrary angle e and then the average



"i over, <, 6~ 2,i

O {%: k xwv 22 
-( Cg Wsn0;-p,q-.lo P

k 2w 2
E" I (a " e - &b'CO 0GBin 9 i- tvOP, q1 P

(a .2cooee 2a'b' coo 9 sin t9 4.b2sn2Odq q q

[ML a coo 4a,2 f 32E" ff2 p OL q. a CO 8 sn

+(2.'
2 bb.+ 4a'b'.'bl)co* 2

8 al~
pq P p qq

- 4a'b'b' coo 0 sids + bl _'b'2h1 .49]dOp p q p
since

o*) e a in 0dO

1 2x 2 2~2f j co 9 sin 6 dO - an0

oe Obtalnu

(x ~ kS 2 ~a~ 2 ,2 k 2abb .2 k
D &I~(&, + b'2)) E- - r j..

- 4 -. 4 pt(.2+b1

P-.P p



bA C. i .a b a + b an d L&a L b'

(2:a, a~ 7~ 2 b -0

(rot) Pqj-1 I- p

Oe k k( 2
b

2
)

(~(rot) Pq'ap P qq Q PT- P

k k
Z. ,2-1 2 2 2

(rot) P,q-.p p E p1 &p +bp

(r'ot) p,qa3. p p q

ave k 2 2 2 22

Cons~ider ncw the third cwamant as given by foruilA 4 .2

ekeptE) 4 E" ~ (0~ +Cc )(o.C e +C 0
.3 ~q-Ip +cep)(Ctr req r*p p r

8 k
- ...4 p .Er (c *cq*cp*crOcr + fpccpcccq + .oc c rc~cr

" o,*ce'po*cq +0 cpc~jorO~ + pqc~rcrO

" aP qrcqcPcr + cp'c~ccc)

.a simlar procedure as vas used for the aver%4e ovr rotAtios of

the varianoe of 3 it can be abown tkat all the above trm In tke

Skewnesls of D contain only elements of the folioving typesl



kkEl . 2 -2 2o2_
P.. q, r- P+ () p,q,r, p , q r(2) V "Sa -a) £' ~saf

rt, p q q r r

(3 & 2a2b2  (8) b' a b bz
p,q,r-l p q r pq,rwl p p q q r

2 2 k
(, aabb (10) r b2b2b2

q, r p,qruil p Q r

Iast*&d of doing the rotation on these elements directly, a as dme

for the firat Wo cumlants, an alterative procedure will be used

which eliminates sam of the drudery of the Algebra. This proceuwre

proves to be very satisfactory for the averaging of the fourth cuaant+

?he alternative procedure makes uA of the fact that after averag-

ing over rotatios the elements are given by linear combinaticos of

the invarzents. By finding all the Invariant# in advance, or. can

easily find the coefficients which express each of the elements as such

linear combinations.

a - a' coo 9 - b' sin 0 and

. a a' 01i a + b' I cc'

then

. a cooei + sin 6 and

bl--asin 0 + b coo 9,

so an infinitesimal change A in 9 will change a' by an amount

b'4. lec- an inflnitesiml Chan in 0 will cluage



k

a' 'a~ by aa; kmout v5 V ,a 0 a A twz)-,-"Y tabinc nrw
Sp q r 1, ",I r

be conructed to shov the effe,2t of a n ite± : chng in Gor

Coefficients of the Unear Combinations of the Klements of

*kep B after an infinitesimal Chmnge in e

pqrr -

(3) 22 a 2 6

p qr

2 222

(5) a a b 4

p qqr

p qr r

(7) ' -- 3

(3) p qa.br

p p q qr r
( 2 2 -

p q r
pp q qr r "

Sb in bhe 2iiar

co~bnAtca~ obtained by ir/ In irinItesi~ c~r.n~e in e., F
example, a chnge . ) in ' chimndes " a b b- by

p,q,r~i p p q r

(ILO) ab%2b' _6C 2 , 2°-2^

-. -f b L .... i • indp~~~q~~rpqj p p~ r q~qr~> r



146 -

si) the Invaxisats wdtr rotation onre orily needs to find thofe coM-

biaasttoni of' (I) tLhro4gk (to) vbtc!Ih ari; unaltered by an inf IxS~tesisIl

(a) ( .a a'a + 2 a 2 ab + a 2 2Y+ 2 bt ababb 2 + 
p,trw- p q r p q. q r r pqr p q r p p q q r pqr

p,q~r-. p qr qr qr pqqr q
k 2 2 2

, q. -ak p . q r +X" (a +)(aa +bb)
pJr 1 p p qr qr

k 2~ 2 k 2 k2 2 2

+ b )tjap + b b )-2"(a 2 + b a a + b 0 )
W, p p I q1 p qp pp Mq, p p paq p ]

but

k 2 2 2 K 4  2 2 2' 4
Z(a&+ b b Z a 1:1'~ a' + 2[( a bt Em flb~ +((h-n]

-2- p.( * +0b'

p q-p'p p q p q

IL 4 k 2hb. 22,2 3 42
E" (~aa.+2,3ba b +an a +-2&bab +tbaM )

p,q-& p q p pq q p :1q p pq pp qq pq

k 4 6 " 2 2 4 252 4 2 f vl 6
-~~~~ &~ -a &2t~t-c*Wa 2' - -b

p- p p pjI. p p p p p p p p p p .0 p

K2 2 2 2 2)3

P-Jl p p p p
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Thus

k 2 b 2 ) 2 2 + b 2  
(2 2)34 - 2 Z (a + b 2 ( . b

I-,-. 'p p

similarly

k 222 2 2 2  
kba 2b 2 22 2 2

(b) r 22 2 +2  2 2 + bqb + - (a +b )(a b%)(a b )
p, qr. -p r + aq r qpu + p,q,r-1 p p q r r

8 -6 (aP + b2  2  E(a +b

and
- k 2 - 2 a 2 b 2 + .2 b 2 _ 2 b~b 2 ,
pjr, q qrr r pqr p q q r p r

ka 2 b2 )( 2  
2 k ~2 2 2

r Ca b a b - a )a+b) -2 ) ap, qr-xiP p qq p q r r p-I p p

Tbese three Invariants (a), (b) and (c) are such that no other

Linear coosna .in of (1) throu h (10) can be found Independent of

them. FUrthermore, these three 1nvariants are Independent of each

other and are all expressible in the form

pE,(&2 b 2 )2 . 7 Ea2
C9 p p +P p-

vhere a, 1 and y are const wts. Consequently

P" Q(a + b 2 )2  and 1 (a 2 +

=Cnthrof / .(aen. avaled ov aw at! r eot l 1 or the tnvrt Ct-

lants of A ( vhen averasged over all rotations of tha coordinvtte system)

--nt be expresaible as a linedtr combination of 1, j . + b2)2 n

I a2+ b 23



ty choosing sume 6imple aeto of vectors one cn easily compute

the values of (1) through (10). This ,ethod AIll now be outLied .

Let us choose the follovina 1r' h ets cf VCof i

1 0 111- 0 // 113

0 1 /1/./2 0 1 /.i 0

o 0 1/,/2-, ,Jj 0

0 0 /~ 0 1/3

o \ o/y o

for the a,+ a

k . 2 2 (a2  2 i)3
p2 (a p b , p'.l( p +bp

for the set A

k( 2 b 2 2  
2 1 E 2 b 2 )3  1

p-.].p p ) p p P

for the set 7

k 2+ 22 . 2, k 2 2)3 2

Any third cumu.ant element averaged over rotaionu is of the form

Ave(4 + .y Z(a 2 + b 2 ) 2 + Lr(a 2 + b 2 ) 3

(rot.) p p p p

vbere L Is an arbitrary expression of sixth degree in a and b.

't o' 70 be te values of an arbitrary 4uaftlty L averaed

over rotations far the sets a, and 7 respectively. Then

s x+2y+2z~0

70 - + y
2 2

7C X - y+-



and, solving these equations,

Ave(.) + 8- -70 P P
(rot.) 0 ohp

0 25+ ,,. p P-

A table of a, PO and 7. ,,r (1) through (10) io hbown belov

&a Table 5.2. The values of the offcients x, y and z iv the

expression for ave(L) my then be written down, using this table.
(rot.)

Those values are given in Table 5.3.

Table 5.2

Values of the elements in skep 3 averaged over 8 for the vvoct-re
a, e nd 7

i1) 0 3/16 7/18

0 0 7/1(3 11/18
() o -1/16(5) 0 0%;1 0z;
(6) 0 7/16 418
(7) 0 0C.
(8) 0 -116 -1/16

9 0 0 0
-(0 1 3/16j7/18

Coefricients in the linear combinatiwo expresaing the lements of
ave skep I in ter=o of three convenient Invariants
(rot)

7~1T1 r(2 2 2T7TT
(a) i -8 7178

GI~ 0 0
(0) o
(4) o i/8

(6) o o
0/ o0 io ~



The fourth c:urulant @f v ontains product of 1vads 3f the forr

Cp*C *cp*cr*c *c ,c *c and of the form c.cq.c c C.C".! C ' q

io rind the average over rotations of elop b we first need to find

a maximl set of lzdepeudent invariants. It will then he possifle to

find that linakr comblTuation of these invariants which results, after

rotatton, from each of the listlDct elentu in cl,.c .c s  0.1d

c C 0 ... c, The distinct elemnts are
p q q

1) k 2 22 2 kr 4 1n a a a& 16) L~ asap,q,r,sal p q r a P, q4 p q

2) a a
2
i
a 

t 17) aa 'bpqrss pqq

3) aaa
2
b
2  

18) a a~b2
p qrs pqq

pqrrse pq4) 9 2aM 20b itb a1

pqrrs a pqq

p qI 
r r a  

I P P q

E. b b6) a-a 'b op q qr r s P qq

) e p e 
b 2 ab aqb3

Sqr rs p pqq
91 3
a~ b-b- H4 eb

10) a -r

1i) a b a ba b o6) a [ba&b

p p q q r r 3 s p p q q

aU a ) b
p j, q q r r s p q

}p q q, D 3b4
p , q rsP P

4 4
15)1" b b Ib bt
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T'h, ec* ff2 oeot:; rCfnt ig I ) t hro-) t n) nind 2) thrnu,.h 3(1) with

the resui3t of an Infci ai gc clo na in b iro lv,, In -' Tb~ 5 .4

Coefficienti of the near coibtnatloQTs of the Iewntz; of elop
after 9.n Infinitecim1 change i1i

2 1 1
-2

5 - - 1

6 1
.7 -3I
8 -2 2

- 2

16 17I 19 20 21 2 ,4 2 0

16 -

-1 1 -

8 i 2-4

I 4 I

20___ 4WW K. 1 L1..1~ ~



ojowlng et of !ndopendeot Invarlants can oe deduced:

(A) 4( 4~ 6) V4il + 4(,

( ) ,.1) + 4(3) 4((6) o) + (15)

(C) - (6) - 8) +;?(6

by rearranenent and moms algebra (A%, (fk) &nd (C) can be writteon as

IL 2+ k 2 2) k 2 +
IL 4 8 r,(a b )+ 8 Z a - 4 E (a b

2 b2) b 2 3 ) a b
k- P- P1p p - p-2 2 22 k4E + b )i+ 2 V* (a a + b b)

P. p p Pq-1. p q p q

1 ( 2 b 2)4 + 16 M + b)
3

p' pp-'p - 2prl'p b 1

a2  
2 22

k - 21
c I r( I I') Z+ (. V b - b)

p- p + p pq-. p q p q

Prom the Uble involving k16) thrcigh (30) the follovlag set Of

indaypandant It-ariants can be deduced

'A') (') + 4( ?i) + 6(2) + 1(28) + 30

(i) - i6) + ( S (2o) ,(2) + 4(27) - (30)

(cII - (20) - 4(23) 3(25)

These can mla. Oe vritten as

(A') ', ,I(dpa q + b b 4

p ' qI p q

2 P4

-4



Frow, a careful study of these invariants it soon becoars apparent

thW t a cc-venient maxl zal aet of indepv.ndent ii viriante, aa linear

eambinations, of which we i&y expres the averse over i-,tations of

the fourth cumulant of B, are 1,

k 2 2 22 k k.E (a 2, + bpb. )" I.(r a b -bh a )I

p-1 p p ,p ,q-l p q p q p,q-l ;qp ~q'

The averge va-ues of the terms (16) through (30) for al rotatims

of the coordinate system only Involve the linear cobination. of three

in~variants (A'), (B'), (C'). A table of the coefficients of (A'),

(B'), (C') for each of the fifteen is now given as Table 5.5.

Table 5.5

Coefficiento of the linear combinations of (A'), (B'), (C') for the
elements (i) through (15) averaged over rotations. (Bach entry

=at be divided by 12L)

(A') (35') (C') J (A,) (B') (W)

(16) 20 15 -12 (23) 0 3 -
(37) o 0 0 (24) o 0 0

(18) -4 9 -4 ( 4 -1

(19) 0 0 0 (26) 0 0 0

(^o) -12 15 20 (27) -4 9 -4

(21) 8 -3 0 (28) 8 -3 0

(;2) 0 0 0 (29) 0 0 0

L0 20_1 -12
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The eera e valueo of the t rmb (1) thrcogb (,5) for all

rct ations of the coordinate j, l:olve all of the seven invari-

an't and are given in Table 5.6, toth TAblee 5.1 ed 5.6 were

calculated by 1irect rotation methods as given earlier in ttUz

section for the second curAulant and also by the metho4 outlined

for the third cumulnAt.

Table 5.6

Coefficients of the linear comtinalmue expressing the elements (1)
throvgh (15) in terms of a set of invariaots. (Mach entry must

be divided by 128.)

2 2 2 2 22 2 2,2 2 2
1 E(a E(a~ b +b (a +b~ 1 fra~ (a a+b b)4 *1 bq _b pa)qp p p p p p p p pq

() -288 320 -150 45 60 -36
(2 0 0 0 0 0 0 0
3 128 -192 128 -42 27 -12 -2
, 0 -16 32 -18 3 12 -1

(5 0 0 0 0 0 0 0
6 128 -160 61+ -22 13 -1+ 28
7 0 0 0 0 0 0 C!
8 o -16 32 -1o 5 -12

9) 0 0 0000 0

.10 128 -2 320 -150 27 60 -36

By coining the elements (1) through (15) with elements (16)

through (30) according to formula 4.4, w arrive at Table 5.7 which

has ?I entries. Sazw one of these 21 terms is equivalent to each

of the 256 terms which arise in the 28 array defining the fou-th

cumulant of b averaged over rotations of the coordinate system.
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rbe 5,

e"Wrinta of The iarcominatiOns excprearing the elemen~ts of ave
elop 11 la termd of aeven cm~venient invariants (rav .)

"I P, c I A
AA 4 I;. m r W

K P.

a
2 2 2

g 0 0 0 0 0 0 0~

p q qp q r c

q q frbra~b.0 - 2

Xbaseabrb. 0 0 0 0 0 0 0

.2.2 b5 2  4.8 -60 24 - 3 o

**', o -.6 122 2

a 3 b zg C ababs 0 0 0 0 0 0 0

sl 2 a 2 b a% 0 0 0 010 0 0
p p 4 4 pq qr a

&3b ab
3  perlrl 0 -6 12 . Z

2  
P-ab

2  ~*
b a b b~ 0 L 0 0 0 0 0

pqrrs. ab2 ba 12 - 4- 2 1. -

2b 2a 
2 aA2 a 22 8 -6o 24 - 6 ~

.' 03  .2b2 .b b2  0 0 0 0 0 0 0

aP2 b" P-b~p-b2  4.8 .-72 48 - 9 14 .41
p pq p qr s

-pp q~ rr, 1 00 ~ 1 l
a vb 0 0D 0 0 0 0 0 1

P P qq p p qq r r~ ~
."b b" apba b b%' -6 12 0. 5 -.1

b 3 .b 3  
ab

2 
b

2  0 11

et q b b4a rb2b2t 0 0 0 0 0 0

bppq q pprs r. o



Chapter 6

14ORMAJ, TY19OY FOR TWVO T34ATW7,;

0.i inTrogu1ionn; t In One Dlmen son

A standard avethod for testing whether the mea) of a sample has

a certain specifled value when the populatiom variance is unknovn ts

to make use of the t distribution. svj!psoe th t xl, x 2P -" --k

to a sample of k independent observations rrom a no~rml distribution

with unknown ma" A and itandard deviatiotj a. To teat the hypo-

thesis that the man of the populAtinn has some specfted value, say

p., one forma the ratio

110

k 2wher jr r Ix and a-

This ratio has Student' distlbution with (k-1) degrees of freedcm.

In the asmc way, a tent for the difference between two population

means maked use of the assumption that the popuJations are tndiependently

nouJ)..--y, istributcd with unknown means i, and U- Tf the '"ariences

are also unknovn but can be asiumep equa then a statistic for testing

whether the i- &n j are equal wskeL use of a pooled estimate of the

pojuiaston variaizie ufined ab

(~(k
k 2

whe 'e



k i ..-. £ l i

The -v t hc u aed i o

and the test is mde in the saie wny as the single smp1e test given

above,

If one is not able to make the assumption of equal population

variances then the problem is more complex. The separate est mates
2 2

a Vid a2 for the population variances are used in the ratio

s a6.3

This ratio is not distributed as t with (k 1 + 2 - 2) degrees of

freedom as was the Lase with equal varlmices because In general the

denominator :a not propor,-ionai to a X
2  with (k + k2 - 2) degrees

of freedom. Ho+v , this dlitribution has been studied by Welch

[16) and significance points have been tabled. Furthermore, Welch

[17) showed that the percentage points can be approximated by the

percetae pont& of t: e t ,-strlbtion with f degrees of freedoz

whe re



(k - ) •'k i (h1 ' i) ,

These tests oDk use of the absujuption that the underly.rg popr-

lations are noroally ditrlbuted but as ntioncd in Chapter i, thdy

are remarkably irsenaitive to deviations from normality.

6.2 Introduction: Notellingi T 
2

Proceeding now to the multivarlate problem, we asiule

{(xI x x21), (XI2, x 22), .... (Xk, x 2k i

are pairs of observations drawn Independentiy from a bivarlate rir.A1

distribution with parameterp e t, p2p alp 0 and p. The samle

means ( , ) are distributed ac-ord1 g to a bivariate noorml dis-

tribution with parameters 1A. 42P 0l/k' a2/ and o. These

2 2
caple means are independent of s, s and r, the estlstes of

2 2
1l a2, and o rerpectively which are defined as

2 1 k
n ..L (x - 7 ~ 1, 2.k

t - j l(* - R~i )i = , 9.

T quan-i.y

ic. (itribut! tv X w!th degzs o!' fr(do. Replacing o),,

2 , ' ,,z )

e. and p by thtt t i.:sa~e. , sP and r respectively expression

6.4 i.- , ed by
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Whet I X;,, < I < k, are iidependent samples from, a btv&r1.ate

nraal, thcn T2 is distributed as

2 ( r2,R 2  6.6

To test the pothcsls at the 0% level that iI ana P.2 have

apeeified values qi and $L,, bay, against the alternative that

A, A P10 and p2 A p2, one cutes T vith pI and p2 replaced

by ULA, ani I 20 and compros the result with the value of 6.6 M34ng

the table of F with 2 ant (k-2) degrees of freedom at the C1

point.

The two sample problt in 3ore than one dinenalon 'ollows a

imidlar procedure. This will be illustrated by teating that the dif-

ference between the means of two biveriate normal diatributions might

reasonably bo Lero. Let (xi , x 2i) and (YlJ' y2 J), 1 < i <

;.nd I < J < x , be independent samples from biva-late normal p*pula-
2 2

tione with parameters p',. ol )A I lX and Y , P
X, 1 X1  X ax,, OxP 1yi

2 2
2 2 " Let the estirates of these paraeters be dcnoted
Y1'j OY' )IY2.

- 2 2 d 2 2by X2 , x a x2  r and 8 r

2 P 2 2 2 aP
A s uaing that a 0 Y a al 

0X X2 a 0 
2 and p y y

we can test t.h hyqpothesis that 4xi - p'i and PY2 . PY2 p simLltaneoualy

against the aiternative zhat p X .1 LY and 2 P AY2. Let the

the .l.f.ren.. bes een the &&ple i -ant im denoted by di - V - fi,

i , 2. ~Thcae dLtffertace , under thc ru/l hy-pothesis, are norma~ly
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ditrbied -tth me ian vlves tero ed vtriaiceb

2

+h I ), I(~)

x x - . - 1,)(x 2  -2,

and ay i d.fined siiarly. To test the hypothesi that y

and d2  com from populations with men zero aanst the alternative

tht they do nlot com froT ,populations withi means zero, we fors the

expressio

Cr=,zi=ccefica~. . " u ~

2 2

S6.7 2l d2 are estimtes of he variances of d and

ad are given by

I +

( " - a2

I+ k2 2)

+ L, (X ii + - 'r

Vt-- l.tWjt,4 1 2



u:Aer eultebtI n n-mmity asurptic-a. Agri ai -A test is made

ir. the usual wy meaking use of the uppropriate F tables.

6.3 elat'o_ between Trace ? and PoteI1Ing's T 
2

ReturDoio nov to trace B as defined in Chapter 3 it t a sum-1.1

exerciae in a.1Eebraic manipulation to relate trace P and T2

-ac&u tilat kx 1 , yi), I < i - k are a set of dlfference vectors.

One traueformation taklng (x,, yi) into (a 1 , b1 ) wicb that

k k 2 k
Ea. Lb 2 I and E ab, - is

k

II

k - k1Z*22 Y1k

k
Substituting 6.53 in the for.z-xa for tr'ace B and denoting z

sixply by Z we obtain

trace 8 1 [sQFA )2 (L

S ( y 
E+ ( -

E ) 2

1~ y - XI 2*xl1

(")? ±) (DE) iYY ) ) -Dc .;Xy (EX 1 x[ (LX 2 (

2 22~~Ly 1 - (ixY )]



- ( x' -

let

1x -k~1)EY (k-lfr' +k

n -i y ( k - 1 ) s X Y + k W r a V / a a

Tmen

k x [(k-1)s2 + ky2 ] '11 
+ k 2 2[(k-1)s + y]O

;,race 3 y - My
kI[(k-l)s + kz71(k-1).2 + kY2

'] -[(k-1). + kSII']
2 )

2-22 2-2 2 2kx a + k ya - 2k US

x + +

y y y x X

I
(k-1) I- Z.2 ,+1

r aax x yG

Prom formula 6.5 we 5ee that

-2
T k~i-~ 2kr + k

I-r a Xy x

Thus

(k-i)!--2 + .1 (k-I) + 11
2

6.4 DIstributio of trace 3 Under ormajity Au&3!ngtiOnu6

for p 1iax ~t~lj auid k repications is given by



I T___~ 2 2 T

i+

Let trace B when the un rlying distrjbuton is norml be denoted

by Wx, Since

WN 
7

for the case of two dimensions, one arrives at

2k

M 1 ,3 M.

k2

1 ' 2

;_ N) 2lJW 6.9

*or the distributi -i of I'l

6.5 An wIrical. Sampling ptperiment

For the purpose of inNestigating empirically te effect of non-

normlity on Notelling's I , a sampling - xperIznt using random

inumbers and random normal deviates vas performed. Forty-eight samples

of size w were djawn frm both a two-dimensional uniform distribution

oi (4 , ) and from a bivariate normal ditribution with zero mean,

unit variance and zero covariance.

The sample size 8 was chosen for Gevers! reabon.: IL -as a

ii,,ageabir jizt for t~Le neceesay comput..tions (Involving 21 rendoulza-

tLons for eachi za umle) wnJ ch coule be ccinlently )rograxoed for the

electronic comtputer available (Burrougho IO1). A-so, It seeu not



urllkely that samples of size 8 r~te, ccur in actual problews.

Furthermore, for a samp;le snll size 8 one Ooeomes souewhat

concerc" a* -)ut making t,e necasaary nornaiity sasuiptions for a

T
2 

test.

Forty-eight samiplev were chosen beo it seemed that a reasun-

ably large number of samples -'ould re required to make defini*e con-

clusions abo t significance p0in a; but at the saw time forty-eight

was usl enough to keep the amcunt of couting within reascon.

Samles from a- rectar gular distribution we.re chosen because of the

convenience in using random numer, end the desire t, investigate a

distribution consid rably different from the normal dAstributior.

Samljes from a normal distzibution were chosen to both verify the

results urrived at by d± rect mathematic l mesans %nd at the smae time

to c-!.%rly show the contrast betveen frequ ncy distributions of sig-

nificace points obtained from samples from a non-normel distribution

and those obtained from samples from a normal distribution.

An indi~idual pair of elements from any sample of size 8 was

considared as being the observed difference of t-he meeu ureLento vithin

a block from an experiment consioting of eight blocks, each block

coztaining the rerults of tne quaxititative measurement of two responses

from two different treetnents. These differences (let them be denoted

by j V. )i sre tl IL

given by formui!.. 0.8 with k - 8. For each samle

2 2
wtree A t e+ bi

.ra oupute±d na were ail the~ 17 other traces obDtained by no-,t changing
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and changing the eign of each pair of (al, b) This gives rise tj

a set :.f 128 quantities ranging frwc 0 to 3 vth an average value

of 2.

With the 128 values of 3 trace B for each sqle, one can

pich out the lArgent valu.e and then compare the empirical distribution

with that expected under normality &9auqptlias. A frequency distribu-

tion of the number of velues of W - 8 trace B which exceed the 0%

point of N can be coritructed. The frequency alstributlaes for

bot1h the samples frm a normal dtribution and from a rectang, ar

distribution for the 5.0, 1, l. and 0.% points are given in

Table 6.1. Table 6.2 gives th* &ctual percentage points of the

empirl2sI distributions obitaned by coarputing the i of th4 dletri-

butiona in Table 6.1 and converting to percertaes. Also 9%

confidence interyrls ae given in Table 6.2. rt follows from T.ble

6.2 that an aproximtae rule for cosuting the actual ,ignifiance

level when a test is carried out at the o$ (a > o) level on data

wbich daviete from noix-.ity in the same wy that the uniform distri-

bution deviates from normality i8 simply

actual significance level - 1.1 ax + 0.5

This lormula gives actual significance levels of 1.05, 1.60, 3.25

and 6.00 in place of the observed 0.96, 1.68, 3.24 and 6.oc.

6.6 AdJustment of Parameters in Dfst1it,,n. ^-

In the foregoing example, one is left with the posuibility of

altering the pareAietern in the diatrIbution of trace A so as to

mke a more nearly exdct signifiicace tet. This can be doe in
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T&oi~ e 6.1,

frrqueny distributien of pper 0% tail based un ,,rutal the ry for
49 coles from the recbanga-"r distribution anc, frwa, the normal

diateribtion

eo xceetA.Ing I~r~ ,aj~i netn-er5epe
c point Norma-, Sme_______

5% 2.5% 1.0% 0.5% 5% 2.1% i.o% 0.5

o 1 14 2Z 1 2 8
1 4 13 17 1 1 13 2),
2 3 11 12 2 0 2 16 13
3 1 7 8 0 J.0 10 3

4 9 1 1 14 7
7 12 4 12

6 9 4 4 8
7 6 12
8 7 9
9 6 9
o 3 4112 4

Table 6.2

A-tual sioificance level of a% test for samples from normal and
rectagular distribution

Norm . Samles Rectangular Saaples

IoUnl 5 5.0 2.5 1.0 0.5 5.0 2.5 1.0 0.

Actual % 5.18 2.72 1.05 0.60 6.02 3.24 1.68 0.96

9 Cnfidence 4.66 2,36 0.79 0.40 5.58 2.94 1.42 0.78

interval to to to to to to to to
5.7o 3.o8 1.31 0.80 6.46 3.54 1.94 1.11



r. nivmb ,, or waj, cy ~t'taina~;tn tw th, ormn of tho

bet4 distrTbution tc kle fiteld. The most general ;nodej. that one

cn fit 2kea use ,l tlh first .'ur azwmdaats of trae B. TMs

requires .he fitting of the four paranetorc in the distribttor, given

by

f(W)d. ) i - a < W < b 6.10

Watro C is a conmt~nt r-ch that

b
jf(v)dw I

Since we know that trace B to a random vwariLabla, betven 0 and 1

it seems that a convenient thing to do i to fit p and e by the

first two cwuwlants. The problem ther: bco es one of !indina the

Cj% points of a distribution of the form

f()d - W ( - w)'1 6.11

In the ease of samples frm a ncrl diet. Lbutio p - 1 and v -

so one is then required to find the a I points of 6.11 is ths

neigbbourhood of p - a nd v = 3. S-Ince the fables of the Incon-

plete Beta anctions give only values of p and v by steps of 0.5

ana since interpolation for such small values of p and v in very

unsatisfactory, one must approximate these percentage points. An

=th -,.' af i'LrI5 1he necessary percentage points is given

in the Appendix tog&-.her w th a chr-rt (Figure A.1) shoving the tupper

a.0n .5, 1.0 ad 0.:; curves of OW over a ranmge of (f. + 157.
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*J~Y to Lim'! vwoud n XA i 't,iu Q W, tftoo Ir Ixow the t'ectanloar dI a

tribti'nl - Th rre w&ooy dictrIbut~Ina are -I~In ' 6.:l .

?requency distrIbuT.Ion, of upper r2% unij based onn adjuaia..ru the
degrees of freedom in the unconditional. distribution of W by Neans
of the first two cumuiants; of the conditional. di~itribution of W for
vam~les f.-= the mr taig. La zisributioc..

~~ ectangul1ar Sam, 'a

2%point ~% 2.5% 1.0% 0.

2 4 18
3 1.8 5

2 19

6 12 3
7 15
8 7
9 3

10 1

'r,,ble 6.4

Actul significunce level of C~test for semples fromi the roctangulAr
d-iotribnution, adjuiting o& and Y ly the first two cumulaits

onnll Actuai % 95% Co'.id3enc'_Iutrva1

4 Aif - ILA

i.6 to !?.98
1.17O.Z to IA

oi j .3 0.51l to 0.(5
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aL ,t t.4 ;h iw the -igrif! 7 cf! 'I .o 3 af f I "&k !'I t" I! ac ' s-t.1ic t

wd ooe anr see! thetf thl~oto (,I' :Id l cr!~ 'Wrk q.Lzte w;. in

eelecting a value f-rm tht peroutat,zo dltribtiun lo eaeh of the

96 samples VnIch is such tbAt 5% of the value.o of 8 trace 5 are

larger than the value selected. 17he fact that the points obtained

frow Lhe samples from the rectangular distribution when plotted sgainst

pE ( a2  b P)2 (a functlon of the variance of trace S only'- have a

aieltar pattern to those obtaIned from the L ae lea from the norznal

setribution., is ftyther jutifivc $on for fitting thi upper ta i of

thee empirical permutation distributions obtained from the sampleb

from the rectsgnuLar distributions by the first And second cumulents

8 2 22only. In fact the regressilon lines fitted through E (a + b_ 8P. p-

and 8 trae B - 5.05, the point corresponding to p - i and Y ,

are almost identical for the two empirical permutation dlstributions.

A plot of the deviations of the actual 5% points from thoze

based on the fitted beta distribution aguinst the sixth degree invar ant

( (a + b . show that little or nothing would be gained by fitting

the beta dlstribution by the third cumulant also.

Other ways of adjusting the beta distribution to fit the upper

tail of the empirical. distributions were also tried. however, these

luthots proved to be considerably ir.ferlor to the one Just outlined.

They are pre6ented here to Indicate ways of imprcvinIg the sigiiiicemne

Level of tht tc.t when one does niot have the ttse or inclination to

approxio&ntu the pjrct:ntagje points of the i.ntooniete beta function,
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fhr ?r.xtWarMethods flr I~e tjS is icrc Lvln

The tre;:Ine

z race B D + ID
ip.

might be considar~d as being distributed as

f(W)iU - C(1- dW 0 < V < 6.12

There are ninny reasons for rejecting this distribution from cangiders.-

tion. The ma.in reason for rejecting Is prbeb2ly beccw se we know that

the upper liimit of the range of trace B is 1 but this distribution

given by 6.12 has an upper limit of a. Thus one might arrive at

ar C4 signific nze poiot for trace B in a particular case which is

outside of the rszge (0, I). however, this distribution doe. allow

one to alter the significance points with a very small amount of coin-

put&tio. To fit this distribution one needs to find a, v and c

such that

c( -W - I

0

o

-_l 1 p'

00

tlhvie equ-tiois wheni solved give

4

N, b



+

Tlleee 1'ormuas aoplied to the f iaoailes fro.i t'i v;J fco di ,mtr-

butio" give rise to a set ol vs'e d i a' each o! wh1in alre uned

to obtain a v&x- of Wa by the forula

or Wa a(I '

Oor vhen records the riawrber of vsllue in the randordzation distribu-

tion of trace ? shiCh eACieeds this W. The frequutncy distribu-

tone mra given in Tabi. b.l and associated adjusted percentage points

and confidence intervals in Table 6.6. It is interesting to note

that the noinal % and 2.%, siguificmrce levels for the caue of

the usmples from the uniform dietribution give rise to actual observed

significance levelb of 5.17% and p.46% as oppo d to the 6.01

and 3.24% arrived at witnout ainy adjusvrmnt. However, the IA and

.5% levels do not have this rather good -gseeurent.

An &ltermative method is to fix the upper end of the distributlon

at 1 and allow the lover end to ..nkdr. This again requires the

use of only the rirst two cweuLants of 2 and without . hor detail!j,

the resultq ar ! Yven in n ble6 "5.7 ana 0..

Neither of these two approaches gives rfe to very satisaeotory

reuJ to-. Mlowever the firiL ,. the two d r.o give reeontble r,:-ult-

at the 5 and 2 l levels at the cost of bad rsults at the 11%

-nd O. I.l If oi, were lnterted in S test at the '5 jeel

Pin,! wlisnod to !uake ao lnrvotin. th':cuxo of, the actual



Yreqijmncy Iltrlbutlos~ of up-, t~li buise'i or. iC;J thL,
,'~ ~ -~ f trac. to be fixed a~t zer..

aC,,'umting the upper nnO. axei the pp-reveter v for seapnn 1rou, th&
rectAnigular distribut! on

3..~ 29 9
2 13
3 .14 1

42 ,-4

9 3

Table 6,6

Actual significance level off 4 test for sampies from~ the rectar.-
grdar diatribuion, adjAoting v and urpper end of distributlon of

trace B

N iominal Actual 9~% ConffidnnceIntervad

5.7 4.87 to .4;t
25 2.4 2.22 to 2.70

1. 0.6- 0.51 to 0.79
0. ".10 0.00 to 0.20



M-Ale 6. 7

r~ea~c~y &t-Ibuti f upper 0$ tail bated on &Ilomling the
uper end of thn dfitributiou of trace 11 to b'. fDxed at & e)d
i-djusting the lover end and the paramnttr ) 'or aia;pet from the

-re ta~igular" distribut lto

No. exC-le n n f l- -ee
0% point 2.% 1 .0 o.%

0 ! I,:"

1. 2. 20 2~7
" 3 17 8

3 i4 9 1I 4 2 24
5 a 2.
6 8 4
7 16
8 7
9 T

Table 6.8

Actual sigilficance 'Level of a% tent for sanuples from the rectan-
gular &istribution, adjusting v and lower end of distributon of

trace B

Nominal % Actual % 9% Confidence rnterru

5.0 5.32 5.0 to 5.63
.r 0.83 2.597 to 3.091.0 1 .3'' :L.14 to 1.5o

0.5 0.75 0.59 to 0.91
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Asignitlance level, then thiz method does offer a fs4rll' simple and1

a l- Ia.. ora". Llii le unn be said in xavor or usilng the

second of the two methods except that the r-ther poor Improvement in

the actual significance level Is uniform for all four levels investigated.

Any other method of fitting using the beta distributio , requires

the use of more extensive tables than the ones now available for obtain-

ing the percentage points of the beta distributions. If these tAbles

were available over a fine grid for smil numbers of legreas of freedom,

then one could test the adequacy of fitting by only the first two

cuwmants versus the use of &lU the four ,unalants which have been

theoraticaUyll determined and can be computed rather easily. Tbles

of the necessary computations for obtaining the first four cumulsnts

of trace B for all fo samples are even in the Appendix (liables A-3

and A.4).

6.8 S! setions for Further Investigations

Although certain conclusions seem evident frce the limIted empIrIcal

studo don hre, It seems that in order to filly Investigate the effect

of non-normlity on Ktellig's T2 one needs to Investigate other

distributions than the rectangular. A Listribution which would seem

to be worth considering is the double exponential. This would give

some inrormation on a distribution which Uffers from the normal dis-

trIbution in the oppostie way to that Ir which the rectangular differa.

Clearly, there Is nn end to the nuhber of sample sizes that one

"jhht use iii the permutation approach. However, results based on
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samples of size 8 only ar certainly in, ce'uate In drawing cjin-

cltwlons about samples of sizes other than C without first in-

veetigating what happens for several differont sample sizes. To

invetigate samples much Larger than size 6 one needs at least

a medJum size electronic compiter.

'fta problem of investigating ote~ling's T2 where ther are

more than t>. ro. Lponses being measurd was not treted hern I't a

swell amkmt of wodlfication in te methods used should product the

necessary results. Covwutationall.,, w>re than two response& shuld

create no nev pr6ble.m.
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AXPLIDIX

A.i M4thnd of rA'ro ig the r:rcintoc Polv, s of the Beta

Distribution Over a limited range

We require I for U - 0.05, 0.(X05, 0.0l1 0.005 where

-1--J (. - w) W - .I
IDO, V) W a

over a range of (p, v) such that v - 3p an3 d lies between 0.5

ad 2.0. If we let I -H - t then A.1 becomes

( v) 'I

Ux;u4olg (I - t)P-
I by a Taylor's eeries we obtain

3(p v)* .2

rplaci.g I - Wc by ta and integrmting term by term A.2 is replaced by

ty+3
G- - ,-) - + (V+( -..

vV+T ~ + 3 v +3 r()

Applylr Newvto, 's meth for finding the root of a polynoial, t

can be quickly found over the necessary range of v - 3P. The accuracy

of this approximation sa checked at each end of the range of p re-,

quired (0.5 axd 2.01 against the values obtained by linear interpG-

lAtion in the Tables of the Incomplete Beta F-mction. The appra~i-e..

tian agree,- to a. lrkaSt four Oilgl can--t d1igito for_ al vl .T 1

A chart, constructed from the cor uted poLrts lor 1 " .7, .8, .9, 1.,,

1.2, '.3, 1.4, i.5 ad 2.0 is given, aa Figure A.1.
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C. ome n toi T tyle aA.,,A.2

Jsam tb4 G * 1 P, mere tbn h te,, tts -vrau. of One

permutaoton ultributlon are T rre~ extra w e &I'?efl

be r&u, 1heae aaup-let possesed more thfti t-ern p enaitatio exceeding

tfie ~% normeJ. theory migznitncane poin~t.

2
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The Largest Yalass of t h Pormutatio, tt w f
for It? Ramw#.* .tf AlaFl... .-

AMMLZ NO:

1 2 3 6

7 -A0 5.115 6.503 696L 6.W 7.180 7.286 7.579
6.763 4.998 6,067 6.868 6.525 5.713 6,761 7.2-2,
6.6 9 5.990 ,.4lh 6.664 6.525 5.589 6.315 6.(2o
6.)#u 4.9ki 5.360 6.3m 6-473 5. 52 6.032 5.w
6.2)9 4.036 5.W8 5.,10 5.769 3 5.670 5,437

6.13 4.67 ,.158 .16 5.363 5.352 5.362 5.hlo
5.432 4.620 5.12 5.395 5.348 5.152 1.289 5.28
5:R. 467 509 Ic 5.259 11-856 5.005 5.-2745.01 h AM 5 ,o67 4 .733 5.222 4.852 4 .979 4 .992
5.031 4.475 5.036 4.638 5.214 4.634 4.974 4.987

SAMPIZ NO:

9 1o 11 12 13 14 15 b

7.555 5.76A 6.305 6.960 6.994 7.277 7.280 7.2
6.130 5.599 5.768 6,437 6.6.18 6.944 6.955 6.677
6.51 5.535 5.685 5.708 6.,42 6.073 6.480 6.044
5.730 5.518 5.657 5.502 6.074 6.071 5.658 5.866
5.503 5.348 5.631 5.419 5.719 5.661 5.360 5.622
5.345 5.321 4.901 5.262 5.670 5.642 5.213 5.385
5.331 I4.829 4.855 5.169 5.602 3.618 5.168 5.231
5.153 4.766 4.773 5.106 5.491 5.538 5.130 5.219
4.832 4.6T5 h.641 5.o91 5.375 5.006 5.108 5.181
4.815 4.385 4.584 5.011 5.095 5.003 5.o4o 5.09)

SAWIRZ NO:

.17 18 19 20 2 22 23 24

6-563 6.993 6.816 6.842 6.693 7.620 7.172 6.659
6.185 6.8m 6.650 6.365 6.321 6.701 5,792 ..242
6.053 6.435 6.021 6.275 6.274 C .sn -.- 7_0
5.997 6.38A 5.920 5.864 6.060 6.202 5,339 5.584
5.551 5.84 9 5.527 5.513 ).475 6 .0-L7 5.i04 5.271
5.422 5.598 5.392 5.302 ,.473 5.712 5.042 5,198
It gr 5.569 5.158 5.L-98 5.4o-R 5.54-4 4.885 5.1B5
4.528 5.4469 5.087 5.134 5.266 5.013 4,805 5.151
4 ,650 5.440 4.7,52 5. 5.r#4 .(2 4.6!,4 4.626 4.782
4.396 4.903 4.663 5.co 5.o19 4.598 4.481 4.396



Table 4.1 (cout,<I.)

SA.MPIX NO :

2 22

6.125 6.796 7.4)A 7.166 6,607 7 -"296 fj .805 6.681o36 6.4.50 6.644 v.221 6,962 6.2J2 6.6,965.56d 5.755 6.,41 6.432 54 9 .520 6.1 0 6.187
5.7% 5.5hc, 6.018 5.519 ,.706 6.537 5 72! 6.io

,138 5.527 5.868 5 .36 5.104 .877 5.425 5.7,4.--339 5,368 5.& , 5.087 7.3O 5.749 4,. 4,4 5,6965.034 5.168 5.579 4,9-3 5.296 5.587 . 04.5.023 5.04t5 4. qo4 4 .879 5.145 5-395 4 O9o .433
4.840 4.828 4.582 4.871 4.944 !65 4 PA 5.2094.786 4,602 4.573 4.7?9 4. 7 44 5.20,4 4. ,76 5.201

5,184 5.171

SAMPLE NO:

33 34 35 36 37 36 i9 4o

7.118 7. 7 6.486 6.68, 7 7.51i 7 . 76 55.985 6.346 6.375 5.925 6.801 6,627 6.593 65.978 6.067 6.328 5.790 6.282 6.153 5.669 5.9605.965 5.879 6.095 5.719 6.178 5.937 .470 5..265.9-9 5.737 6.078 5.65 5.885 5.690 5.247 5.7325.859 5."49 5,964 5.631 5.189 5.493 5.179 5.7285.306 5.AoO 5.09 5,.236 5.142 5.282 5.01i 5.4864.809 5.117 5.287 i. 46 5.015 5.235 4.969 5.3894625 4.887 5.051 4.531 4.946 5.189 4.967 5.369
4.348 4.733 4.930 4.462 4.772 4.787 4.720 5. Z6

5.153

SAMPI 10

41 42 43 44 46 47 48

7.553 7.491 7.142 6.788 7.176 6.751 6.448 7.1797.018 6.355 6.909 6.435 7.002 6.107 6.-293 6.3516.972 5.662 6.69 5.935 6.416 6.064 6.165 6.1516.354 5.630 6.24 5.704 6.2-7 5.930 5.713 5.61560k -616 5.!.61 Ulu2 P-7 .09 5J8 6
O .e5.6"2 5.580 5.202 5.364 5.5u 5.008 5.162 5.0475.44 5.574 -5061 5.3" -5.161 4.9,8 5.056 46.842

5.41] 5.538 4.805 5.263 5.317 4.7-0 4.919 4.6685.233 5.380 4.738 5.?47 5.268 4.645 't.,67 4.652
4.9o0 5.346 4.698 5.182 4.615 4.618 4.C. 4.4255 .o6:
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'Ta1e A.2

The 1arent Values Of te Pertation DistrIutIton t 8(tCt b)
for 4F Semplea of size 8 Trim tl,-. girme-! DatrIbutio'

SAZF, NO.-

1 2 3 46 7 8

c.165 ,885 7.323 5,983 7.034 6.939 6.8P7 7.245
.727 ,..7r 6.311 5.729 6.559 6.858 6.731 6. '.

5.179 4.7-9 6.oh9 5.63 6.363 6.8'n 6.530 !.840
5.115 4. 2 5.780 5.467 6.oT2 6,1.44 5.89 5.730
5.043 4.148 51 .763 5.o63 6.036 6.148 ,T.o 5.6b

001 4.o9 .9 4,592 5.513 5.P7 5.743 5.59
*77 3.805 5-4'M 4.785 5.237 5-2 5-458 5.368

4.535 3.857 5.314 4.65o 5.231 5.129 5.20 5.175
457 3.855 5.247 4.623 5.157 4 .675 5.072 5.166
4.297 3.&9 4.971 4.621 4.889 4.585 5.034 5.152

3A~nA W -

9 10 11 12 13 14 15 16

7.134 6.76.. 5.726 6.147 6.520 5.889 6.693 S.W.
6.678 6. 3 5.583 5.738 6.456 .568 5.962 5.7o8
6.043 6.2b7 5.47O 5.730 6 .373 5.535 5.851 5.620
.8 27 5.318 5-290 5.340 5.978 5.343 5.756 5.410

5.794 5.076 5.182 5.u6 5.958 5.311 5.739 5.241
5,59 4.901 5.114 5.026 5.565 5.268 5.5 4.872
5.399 4.7,13 4.837 5.013 .,545 5.157 4.976 4.835
5.305 4.78 . 4.704 h.982 5.189 .61. 4.967 4.732
5.128 4.78 4.676 4,862 4.9-, 5.068 4.876 4.667
5.o 4.3o9 4.58 4.TO 4.724 4.776 4.763 4.581

SAMPLE NO:

17 8 20 a 22 23 24

6.".o 7.09 6.370 7.673 6.T6 6.728 7.O23 6.07
6.763 6 .l 6 .3 5 6 .6 5 -7 27.. .

5.631 6.813 5.816 6.215 5.777 6.051 6,228 5.689
5.552 6.267 5.566 6,133 5.698 .858 59,72 < .190
5.486 6.044 .9 9  5.402 5.553 5.825 5 .26S 5.093
5.416 5.544 1,375 .115 5.14 5.697 5.225 5.071
4.927 4! 4.?)65 5.043 5.o5 ,5.6o4 5.122 4.63
4.90o 5.46 4.92d 4-979 5.060 5.46 5.049 4,703
4.4145 5.2'37 4.757 4.904 .5. " 03 4.648 4.439
14, d>9 5.232. 4,756 4.592 .84 1i.85' .5')2 4.306

5.096



'ib A.2 (,ontd.)

UM4UIL NO:

2 26 27 28 29 30 31 32

6.633 7.699 6.436 6.459 6.352 1.049 6.116 6.52,8
6.387 6.481 6.233 6.014 5.680 6.5o 5.800 6.452
5.212 6.267 5.920 5.618 5.,72 6.227 5.275 6.206
5.108 5.758 5-595 5.324 5.42 6.191 5.214 6.052
5.021 5-3i6 5.473 5.235 5.3 6 6..o48 4.952 5.513
4.988 5.113 4.833 5.036 5.316 5.368 4.942 5.2-,9
4.978 4.966 4.822 4.896 5.224 5,230 4,930 .172
4.732 4.783 4.690 4.722 5.194 5.182 4 ,696 5.138
4.703 4.583 4.607 4.696 5.007 4.341 4.418 4.960
4.63o 4.439 4.481 4.598 4.963 4.795 4.373 4.919

sMkIZ NO:

33 34 35 36 37 38 39 40

6.161 7.139 7.127 7.234 6.936 7.014 5.528 6.639
5.465 5.775 6.671 b.463 6.134 6.618 5.313 6,544
5.o44 6.618 5.980 6.329 6.07s0 6.611 4.958 6.245
4.949 6.030 5.,72 6.173 5 .77 5.6-3 4.813 4.982
4.9483 5.911 5.770 6.046 5.728 5.557 4.749 4.965
4.883 5.756 5 741 5.588 5.337 5.96 4.522 4.937
4.766 5.0 5.198 5-404 5.252 5.19 4.508 1.914
4.520 5.329 5131 5.0 5 5.007 5.012 4.498 4.875
4.429 5o122 4.987 4.764 4.93 4.748 4.A82 4.58o
4.230 5.098 4.785 4.t22 4.956 4.611 4.475 4.485

SAWPLI NO

41 42 43 44 45 46 47 48

7.258 6.631 6.838 6.890 6.,*A5 6.028 7.175 6.267
6.O4- 6.o74 6.737 5.956 6.2.19 5.885 6.127 5.949
5.827 5.520 5.510 5.903 6.040 5.848 5.745 5.467
5.740 5.270 5.432 5.773 5.94" 5.803 5.702 5.284
5.624 5.245 5.125 5.542 5.749 5.13? 5.489 4.675
5.292 5.091 5.o84 5.4io .-,o 4.959 5.486 4.599
5.122 5.007 4.838 5.302 4 . .931 5.438 4.541
5.011 4.74- .X16 5.249 MK0o2 4.870 5.342 4.4&9
4.948 4.513 4.806 5.05 h 4.956 4.846 5.182 4'.303
4.',.7 t.453 4.703 4.928 4.736 4.654 5.0o3 .242



1ftble A. 3

Va.ues cf t.f 13!x luiri~ta for Computi g the Flrg Fur Cumulants
of trace B for 46 3stales of aiz* 8 from the Upnlorm Distribution.

No.p1 v~Rh E(& +b2)-, r(Z:bt-4"(& it +b b )4 "(& b +b a )
o p p p p p qp q p qp q

1 .5645 .2000 .0795 .33&3 o0627 .1.251
2 I.OV., .6624 .4409 l.077 .o680 .4912
3 .7917 .3853 .- 2 268 .0705 .246K
4 .6057 .2015 .0711 .3669 .0753 .1346
5 .5752 .. 4 .x6 .o3308 .o71i .1290
6 .7481 .3367 .170 .5597 .0813 .2162
7 .62, .303 .0941 .3947 .0663 .1433
8 .58 .i7o6 .o56 .3145 .0893 .1432
9 .65z1 .2413 .0951 .4'53 .0935 .1797
0 .9124 .5164 .3245 .832?6 .0521 .3117

12. .8126 .3907 .,-010 .6603 .0689 .2543
.L2 .7157 .3137 .1561 .5122 .o675 .1959
13 .6046 .2015 .0703 .3655 .o8ao .I"89
i .6o67 .2054 .0741 .3681 .0864 .1514
15 .6124 .2088 .0756 .3751 .093 -1637
16 .6i65 .P074 .o7"8 ,3800 0782 .i45
17 .8391 .4566 .2793 .7041 .0732 .2948
18 .5892 .1930 .0674 .34T72 .0717 .1372
19 .6540 .22" .0787 .4277 .1168 .1947
20 .6566 .2397 .0933 . .0818 .1678
21 .7055 .3082 .1487 .4-;8 .0648 .-2027
22 .6013 .2144 .0866 .3615 .o661 .1305
23 .8.333 .4637 .2763 .7281 .0882 .3247
2k .8317 .4413 ,2632 .6917 .0539 .2453
25 . -16 •3009 1372 .5221 .1048 .2373
26 .7457 .31&2 .1424 .5561 .1070 .2463
27 .7154 .3392 .191 .5117 .o683 .1825
28 •737'- .3526 .1967 .5434 .0582 .1935
1 .6756 .A69 .0931 .4564 .0670 .1793
30. .5354 .152 .0o466 .2866 .649 .1110
31 .7084 .2929 .1359 .5018 .0855 .1929
32 .5d69 .1772 .0547 .,!445 .0853 .14o
33 .6639 .2326 .08o .44o8 .1309 .2146
34 .679 •.2"72 .0899 .3943 .0958 .i6h6
35 .6688 .2670 .LL9 . 4.?42 .0736 .1808
36 7d33 .3416 .1541 .61_6 -4L .. ,
17 .5701 .1707 .0524 .325i .0826 .1346
36 .6>,2 .2132 ,0767 .3871 .0ar .1614
39 djYio .5330 .3756 .7622 .0481 .2737
4o .19L.9 .1945 .c68 .3516 .0757 .1336
41 .52 9 .148-2 .0436 .:2808 .0719 .1104
42 .62(0 .22 6 .06)8 .3932 .0779 .1525
43 .6553 .2606 .1108 .42 4 .0921 .1877
44 .6446 .?n77 .W858 .4153 .0920 .1739
45 .6092 .218 .0796 .3712 .0843 .1514
46 .7360 .3058 .1355 .5417 .1108 .2312
47 .6702 .2387 .Ow3 .449e .1038 .1915
48 .7330 .23 .1596 -5373 .1004 .24,L>
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Table A.k

Values of the Six Invariants for Computing thR First Four Cumulants

Sample E(&2+b2) 2 r~2b) raa) (Ea2b .222 ( &+ 4 "sbba4

1 1.0015 .6292 .4343 1.0031 .0513 .3892
2 1.P644 .9405 .7237 1.5987 .0462 .7242
3 .6550 .2643 .1205 .4290 .0719 .1802
4 .77?" .3559 .it96 ,983 .0688 .2346
5 .6607 .2614 .1135 .4365 .0870 .2002
6 .6001 .2049 .0771 .3601 .0763 .1404
7 .6387 .2378 .0980 .4079 .0708 .1534
8 .6303 .2165 .0791 -3973 .0871 .1567
9 .6341 .2?80 .0886 .A21 .0834 .1,65

10 .872h .4909 .3028 .7611 .0429 .26
U .8627 .426T .2232 .7442 .07N .2704
12 .140 .3884 .&M2 .6627 .09W .2836
13 .6483 .2293 .0843 .403 .0800 .1541
14 .7644 .3229 .1441 .5343 .9) -2350
15 .7799 .3872 .2166 .6o8j ,o57 .2396
16 .9019 .4972 .2979 -8134 o638 .3311
17 .8231 .4168 .2267 .6775 .0518 .2739
18 .5479 .a6o6 .0495 .3002 .0689 .1181
19 .92 2 .5494 .3718 .8486 .0548 .2690
20 .6670 .3060 .1596 .4720 .0647 .1725
21 .7018 .2751 .1132 .4925 .0910 .2035
22 .6639 .2546 .1051 .4407 .0686 .1671
23 .8282 .4496 .2842 .6859 .0844 -2357
24 ,9224 .5083 .3046 .8508 .1200 .39W8
2m A8862 .4910 .2928 .7854 .0597 .3225

* 26 .7951 .4111 .2401 .6322 .0589 .21'7
* 27 .8317 .41"9 .2192 .6918 .0599, '2402

za .. 891 .3527 .1679 .6227 .1171 .2760
29 .7616 .3352 .197 .5800 .0901 .2429
30 .645o .368 .0932 .W'60 0748 .1591
31 .9532 .5412 .3271 .X .1253 .445o
32 .6897 .2780 .1247 .4757 .o66o .1676
33 .9396 .5105 .2931 .8828 .1191 .4096
34 .5;63 .20 46 .0777 -3' w Obc- .1413

36 .7611 .3359 -1670 .5114 .0783 .2o4
417 .6428 .836 '+132 .0805 .1583
38 .6395 .2819 .1253 .4r54 .101>0 .226
39 1.041d .6310 .3977 1.0854 .0519 .4235
4o .6143 .4019 .2131 -,631 .0978 .308
41 .7061 .2939 .1316 .4986 .06T' +77
42 .8+.2 .4496 .2553 7330 .--A- 3 -3396
43 .j t>4 .4162 . 3 4 .0891 271)
44 .66)3 .[,365 -0674 .4360 .0889 -1175
4'i .716 ,67,j . 1L02 .134 .1089 .2189
46 .71344 .3403 .1541 .6153 .1 85
47 ,'(',I .,4bl3 .i)ue .4437 -0799 .16904"" .J, 6 .44o3 -336 .7'289 .O20
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